skip to main content


Title: MOS 1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis
Summary

Emerging evidence indicates a close connection between cell‐cycle progression and the plant immune responses. In Arabidopsis,MODIFIER OFsnc1‐1(MOS1) modulates a number of processes including endoreduplication and plant disease resistance, but the molecular mechanism underlying this modulation was not fully understood. Here, we provide biochemical and genetic evidence thatTEOSINTE BRANCHED1,CYCLOIDEA,PCF1 (TCP) transcription factorsTCP15 and its homologues are mediators ofMOS1 function in the immune response and are likely to be also involved in cell‐cycle control.MOS1 andTCPproteins have a direct physical interaction. They both bind to the promoter of the immune receptor geneSUPRESSOR OFnpr1‐1,CONSTITUTIVE1(SNC1) and modulate its expression and consequently immune responses.MOS1 andTCP15 both affect the expression of cell‐cycle genesD‐typeCYCLIN3;1(CYCD3;1), which may mediate theMOS1 function in cell‐cycle modulation. In addition,CYCD3;1overexpression upregulates immune responses, andSNC1expression. This study investigated and revealed a role forMOS1 in transcriptional regulation throughTCP15 and its homologues. This finding suggests the coordination of cell‐cycle progression and plant immune responses at multiple levels.

 
more » « less
NSF-PAR ID:
10047498
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
93
Issue:
1
ISSN:
0960-7412
Page Range / eLocation ID:
p. 66-78
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DDX4 (the human ortholog ofDrosophilaVasa) is anRNAhelicase and is present in the germ lines of all metazoans tested. It was historically thought to be expressed specifically in germline, but with additional organisms studied, it is now clear that in some animalsDDX4/Vasa functions outside of the germline, in a variety of somatic cells in the embryo and in the adult. In this report, we document thatDDX4 is widely expressed in soma‐derived cancer cell lines, including myeloma (IM‐9) and leukemia (THP‐1) cells. In these cells, theDDX4 protein localized to the mitotic spindle, consistent with findings in other somatic cell functions, and its knockout inIM‐9 cells compromised cell proliferation and migration activities, and downregulated several cell cycle/oncogene factors such as CyclinB and the transcription factor E2F1. These results suggest thatDDX4 positively regulates cell cycle progression of diverse somatic‐derived blood cancer cells, implying its broad contributions to the cancer cell phenotype and serves as a potential new target for chemotherapy.

     
    more » « less
  2. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

     
    more » « less
  3. Abstract

    ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity.

     
    more » « less
  4. Summary

    Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross‐link between two monomers of the low‐abundance pectic polysaccharide rhamnogalacturonan‐II(RGII). The inability ofRGIIto properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects onRGIIstructure and cross‐linking and on the growth of plants in which the expression of aGDP‐sugar transporter (GONST3/GGLT1) has been reduced. In theGGLT1‐silenced plants the amount of L‐galactose in side‐chain A ofRGIIis reduced by up to 50%. This leads to a reduction in the extent ofRGIIcross‐linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to themur1mutant, which also disruptsRGIIcross‐linking,GGLT1‐silenced plants display a loss of cell wall integrity under salt stress. We conclude thatGGLT1 is probably the primary GolgiGDP‐L‐galactose transporter, and providesGDP‐L‐galactose forRGIIbiosynthesis. We propose that the L‐galactose residue is critical forRGIIdimerization and for the stability of the borate cross‐link.

     
    more » « less
  5. Summary

    Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. TheWOXtranscriptional repressorWOX1/STF, theLEUNIG(LUG) transcriptional corepressor and theANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development.

    We developed a novelin plantatranscriptional activation/repression assay and suggest thatLUGcould function as a transcriptional coactivator during leaf blade development.

    MtLUGphysically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in theSNHdomain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations inlugandan3enhanced each other's mutant phenotypes. Both thelugand thean3mutations enhanced thewox1 prsleaf and flower phenotypes inArabidopsis.

    Our findings together suggest that transcriptional repression and activation mediated by theWOX,LUGandAN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.

     
    more » « less