Spotted wing drosophila,
- PAR ID:
- 10047506
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Archives of Insect Biochemistry and Physiology
- Volume:
- 97
- Issue:
- 3
- ISSN:
- 0739-4462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Drosophila suzukii (D. suzukii) (Matsumura, 1931; Diptera: Drosophilidae), also known as spotted wing Drosophila , is a worldwide pest of fruits with soft skins such as blueberries and cherries. Originally from Asia, D. suzukii is now present in the Americas and Europe and has become a significant economic pest. Growers largely rely on insecticides for the control of D. suzukii . Genetic strategies offer a species-specific environmentally friendly way for suppression of D. suzukii populations. We previously developed a transgenic strain of D. suzukii that produced only males on a diet that did not contain tetracycline. The strain carried a single copy of the FL19 construct on chromosome 3. Repeated releases of an excess of FL19 males led to suppression of D. suzukii populations in laboratory cage trials. Females died as a consequence of overexpression of the tetracycline transactivator (tTA) and tTA-activated expression of the head involution defective proapoptotic gene. The aim of this study was to generate additional male-only strains that carried two copies of the FL19 transgene through crossing the original line with a piggyBac jumpstarter strain. Males that carried either two chromosome 3 or a singleX-linked transgene were identified through stronger expression of the red fluorescent protein marker gene. The brighter fluorescence of the X-linked lines was likely due to dosage compensation of the red fluorescent protein gene. In total, four X-linked lines and eleven lines with two copies on chromosome 3 were obtained, of which five were further examined. All but one of the strains produced only males on a diet without tetracycline. When crossed with wild type virgin females, all of the five two copy autosomal strains examined produced only males. However, the single copy X-linked lines did not show dominant female lethality. Five of the autosomal lines were further evaluated for productivity (egg to adult) and male competition. Based on these results, the most promising lines have been selected for future population suppression experiments with strains from different geographical locations.more » « less
-
Abstract Members of the
piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained fivepiggyBac -derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties ofpiggyBat fromMyotis lucifugus , the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences. Activity can be dramatically improved by their removal, suggesting the existence of a mechanism for the suppression of transposon activity. The cryo-electron microscopy structure of thepiggyBat transposase pre-synaptic complex showed an unexpected mode of DNA binding and recognition using C-terminal domains that are topologically different from those of thepiggyBac transposase. Here we show that structure-based rational re-engineering of the transposase through the removal of putative phosphorylation sites and a changed domain organization - in combination with truncated transposon ends - results in a transposition system that is at least 100-fold more active than wild-typepiggyBat . -
Abstract The broad variation in host use among polyphagous insects is well documented but still poorly understood. In numerous pest insects, the proximate mechanisms responsible for variation in oviposition preference among host plants remain to be elucidated. The invasive crop pest,
Drosophila suzukii , attacks a wide range of host fruits. Females prefer ovipositing on particular fruit media (blackberry, cherry, blackcurrant) that are rich in phosphorus. As phosphorus is known to be involved in female reproduction in insect species such as Drosophila, it could drive oviposition preference inD. suzukii . Phosphorus is either present as inorganic or organic phosphate in fruits. As the absolute content in macromolecules associated with phosphate in fruits (i.e. proteins and carbohydrates) do not affect oviposition inD. suzukii , we tested for the effect of inorganic phosphate on oviposition preference. We measured the egg‐laying preferences ofD. suzukii in a choice environment containing 12 artificial media with increasing content in inorganic phosphate (monopotassium dihydrogen phosphate). In our assay,D. suzukii females did not prefer ovipositing in media with high inorganic phosphate content compared to media with lower inorganic phosphate content. As a confirmation, we verified the previous result of a higher female preference for media made of phosphorus‐rich fruits (blackberry, cherry, blackcurrant). The higher preference for phosphorus‐rich fruits could be driven by macromolecules containing phosphorus (e.g. phospholipids) or by the presence of one or more molecules that do not contain phosphorus, but that happen to be correlated to fruit phosphorus content. Studying the proximate mechanisms driving host use will ultimately help improve the management ofD. suzukii and other crop pests. -
Abstract The invasive spotted-wing drosophila,
Drosophila suzukii, is a major pest of fruit crops worldwide. Management ofD. suzukii relies heavily on chemical control in both organic and conventional systems, and there is a need to develop more sustainable management practices. We evaluated the efficacy of three colors of plastic mulches at reducing populations ofD. suzukii in fall-bearing raspberry and assessed the mulches’ impacts on canopy microclimate factors relevant toD. suzukii . Black, white, and metallic plastic mulches reduced adultD. suzukii populations by 42–51% and larval populations by 52–72% compared to the grower standard. The mulches did not change canopy temperature or relative humidity, but metallic mulches increased canopy light intensity compared to the black mulch. Radiance in the visible spectrum (401–680 nm) was higher for the white and metallic mulch plots, but the black mulch plots did not differ from the control. In the UV spectrum (380–400 nm), all three plastic mulches had higher radiance than the control plots. Future studies will determine whether changes in radiance are associated with the observed reduction inD. suzukii populations. Plastic mulches are a promising cultural practice for managingD. suzukii since they can reduce adult and larval populations and could be incorporated into an integrated pest management program in both organic and conventional systems. -
Rogers, Rebekah (Ed.)
Abstract Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia’s success as a male-killer of divergent host species.