skip to main content


Title: Development and use of a piggyBac ‐based jumpstarter system in Drosophila suzukii
Abstract

Spotted wing drosophila,Drosophila suzukii, is an invasive pest that primarily attacks fresh, soft‐skinned fruit. Although others have reported successful integration of markedpiggyBacelements into theD. suzukiigenome, with a very respectable transgenesis rate of ∼16%, here we take this work a step further by creatingD. suzukiijumpstarter strains. These were generated through integration of a fluorescent‐markedMinoselement carrying aheat shock protein 70‐drivenpiggyBac transposasegene. We demonstrate that there is a dramatic increase in transformation rates when germline transformation is performed in atransposase‐expressing background. For example, we achieved transformation rates as high as 80% when microinjectingpiggyBac‐based plasmids into embryos derived from one of theseD. suzukiijumpstarter strains. We also investigate the effect of insert size on transformation efficiency by testing the ability of the most efficient jumpstarter strain to catalyze integration of differently‐sizedpiggyBacelements. Finally, we demonstrate the ability of a jumpstarter strain to remobilize an already‐integratedpiggyBacelement to a new location, demonstrating that our jumpstarter strains could be used in conjunction with apiggyBac‐based donor strain for genome‐wide mutagenesis ofD. suzukii.

 
more » « less
NSF-PAR ID:
10047506
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Archives of Insect Biochemistry and Physiology
Volume:
97
Issue:
3
ISSN:
0739-4462
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drosophila suzukii (D. suzukii) (Matsumura, 1931; Diptera: Drosophilidae), also known as spotted wing Drosophila , is a worldwide pest of fruits with soft skins such as blueberries and cherries. Originally from Asia, D. suzukii is now present in the Americas and Europe and has become a significant economic pest. Growers largely rely on insecticides for the control of D. suzukii . Genetic strategies offer a species-specific environmentally friendly way for suppression of D. suzukii populations. We previously developed a transgenic strain of D. suzukii that produced only males on a diet that did not contain tetracycline. The strain carried a single copy of the FL19 construct on chromosome 3. Repeated releases of an excess of FL19 males led to suppression of D. suzukii populations in laboratory cage trials. Females died as a consequence of overexpression of the tetracycline transactivator (tTA) and tTA-activated expression of the head involution defective proapoptotic gene. The aim of this study was to generate additional male-only strains that carried two copies of the FL19 transgene through crossing the original line with a piggyBac jumpstarter strain. Males that carried either two chromosome 3 or a singleX-linked transgene were identified through stronger expression of the red fluorescent protein marker gene. The brighter fluorescence of the X-linked lines was likely due to dosage compensation of the red fluorescent protein gene. In total, four X-linked lines and eleven lines with two copies on chromosome 3 were obtained, of which five were further examined. All but one of the strains produced only males on a diet without tetracycline. When crossed with wild type virgin females, all of the five two copy autosomal strains examined produced only males. However, the single copy X-linked lines did not show dominant female lethality. Five of the autosomal lines were further evaluated for productivity (egg to adult) and male competition. Based on these results, the most promising lines have been selected for future population suppression experiments with strains from different geographical locations. 
    more » « less
  2. Rogers, Rebekah (Ed.)
    Abstract

    Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia’s success as a male-killer of divergent host species.

     
    more » « less
  3. Abstract

    The broad variation in host use among polyphagous insects is well documented but still poorly understood. In numerous pest insects, the proximate mechanisms responsible for variation in oviposition preference among host plants remain to be elucidated. The invasive crop pest,Drosophila suzukii, attacks a wide range of host fruits. Females prefer ovipositing on particular fruit media (blackberry, cherry, blackcurrant) that are rich in phosphorus. As phosphorus is known to be involved in female reproduction in insect species such as Drosophila, it could drive oviposition preference inD. suzukii. Phosphorus is either present as inorganic or organic phosphate in fruits. As the absolute content in macromolecules associated with phosphate in fruits (i.e. proteins and carbohydrates) do not affect oviposition inD. suzukii, we tested for the effect of inorganic phosphate on oviposition preference. We measured the egg‐laying preferences ofD. suzukiiin a choice environment containing 12 artificial media with increasing content in inorganic phosphate (monopotassium dihydrogen phosphate). In our assay,D. suzukiifemales did not prefer ovipositing in media with high inorganic phosphate content compared to media with lower inorganic phosphate content. As a confirmation, we verified the previous result of a higher female preference for media made of phosphorus‐rich fruits (blackberry, cherry, blackcurrant). The higher preference for phosphorus‐rich fruits could be driven by macromolecules containing phosphorus (e.g. phospholipids) or by the presence of one or more molecules that do not contain phosphorus, but that happen to be correlated to fruit phosphorus content. Studying the proximate mechanisms driving host use will ultimately help improve the management ofD. suzukiiand other crop pests.

     
    more » « less
  4. Steven, Blaire (Ed.)
    ABSTRACT

    Polycyclic aromatic hydrocarbons (PAHs) are common toxic and carcinogenic pollutants in marine ecosystems. Despite their prevalence in these habitats, relatively little is known about the natural microflora and biochemical pathways that contribute to their degradation. Approaches to investigate marine microbial PAH degraders often heavily rely on genetic biomarkers, which requires prior knowledge of specific degradative enzymes and genes encoding them. As such, these biomarker-reliant approaches cannot efficiently identify novel degradation pathways or degraders. Here, we screen 18 marine bacterial strains representing the Pseudomonadota, Bacillota, and Bacteroidota phyla for degradation of two model PAHs, pyrene (high molecular weight) and phenanthrene (low molecular weight). Using a qualitative PAH plate screening assay, we determined that 16 of 18 strains show some ability to degrade either or both compounds. Degradative ability was subsequently confirmed with a quantitative high-performance liquid chromatography approach, where an additional strain showed some degradation in liquid culture. Several members of the prominent marineRoseobacteraceaefamily degraded pyrene and phenanthrene with varying efficiency (1.2%–29.6% and 5.2%–52.2%, respectively) over 26 days. Described PAH genetic biomarkers were absent in all PAH degrading strains for which genome sequences are available, suggesting that these strains harbor novel transformation pathways. These results demonstrate the utility of culture-based approaches in expanding the knowledge landscape concerning PAH degradation in marine systems.

    IMPORTANCE

    Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.

     
    more » « less
  5. McMahon, Katherine (Ed.)
    ABSTRACT Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus . Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>10 5 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus . We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems. 
    more » « less