skip to main content


Title: Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C–O Bond Cleavage and C–C Bond Formation
Award ID(s):
1151918
NSF-PAR ID:
10047604
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
138
Issue:
50
ISSN:
0002-7863
Page Range / eLocation ID:
16466 to 16477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ergothioneine, a natural longevity vitamin and antioxidant, is a thiol-histidine derivative. Recently, two types of biosynthetic pathways were reported. In the aerobic ergothioneine biosyntheses, non-heme iron enzymes incorporate a sulfoxide into an sp2 C–H bond from trimethyl-histidine (hercynine) through oxidation reactions. In contrast, in the anaerobic ergothioneine biosynthetic pathway in a green-sulfur bacterium, Chlorobium limicola, a rhodanese domain containing protein (EanB), directly replaces this unreactive hercynine C–H bond with a C–S bond. Herein, we demonstrate that polysulfide (HSSnSR) is the direct sulfur source in EanB catalysis. After identifying EanB’s substrates, X-ray crystallography of several intermediate states along with mass spectrometry results provide additional mechanistic details for this reaction. Further, quantum mechanics/molecular mechanics (QM/MM) calculations reveal that the protonation of Nπ of hercynine by Tyr353 with the assistance of Thr414 is a key activation step for the hercynine sp2 C–H bond in this trans-sulfuration reaction. 
    more » « less
  2. C–H hydrogen bonds to iodine halogen bond donors are shown to improve halogen bonding and molecular preorganization. 
    more » « less