skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata
Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S2-haplotype and S3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1–Cullin1– F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1, and examined the SI behavior of a T0 plant (S2S3) with biallelic mutations in the pollen genome and two progeny plants (S2S2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise compatible S-genotypes, but fully compatible with pistils of an S3S3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI, and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.  more » « less
Award ID(s):
1645557
PAR ID:
10047759
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Plant Reproduction
ISSN:
2194-7953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1–Cullin1–F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin. 
    more » « less
  2. SUMMARY Self‐incompatibility inPetuniais controlled by the polymorphicS‐locus, which containsS‐RNaseencoding the pistil determinant and 16–20S‐locus F‐box(SLF) genes collectively encoding the pollen determinant. Here we sequenced and assembled approximately 3.1 Mb of theS2‐haplotype of theS‐locus inPetunia inflatausing bacterial artificial chromosome clones collectively containing all 17SLFgenes,SLFLike1, andS‐RNase. TwoSLFpseudogenes and 28 potential protein‐coding genes were identified, 20 of which were also found at theS‐loci of both theS6a‐haplotype ofP. inflataand theSN‐haplotype of self‐compatiblePetunia axillaris, but not in theS‐locus remnants of self‐compatible potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Comparative analyses ofS‐locus sequences of these threeS‐haplotypes revealed potential genetic exchange in the flanking regions ofSLFgenes, resulting in highly similar flanking regions between different types ofSLFand between alleles of the same type ofSLFof differentS‐haplotypes. The high degree of sequence similarity in the flanking regions could often be explained by the presence of similar long terminal repeat retroelements, which were enriched at theS‐loci of all threeS‐haplotypes and in the flanking regions of allS‐locus genes examined. We also found evidence of the association of transposable elements withSLFpseudogenes. Based on the hypothesis thatSLFgenes were derived by retrotransposition, we identified 10F‐boxgenes as putativeSLFparent genes. Our results shed light on the importance of non‐coding sequences in the evolution of theS‐locus, and on possible evolutionary mechanisms of generation, proliferation, and deletion ofSLFgenes. 
    more » « less
  3. Summary Many eukaryotic intracellular processes employ protein ubiquitylation by ubiquitin E3 ligases for functional regulation or protein quality control. In plants, the multi‐subunit Skp1–Cullin1–F‐box (SCF) complexes compose the largest group of E3 ligases whose specificity is determined by a diverse array of F‐box proteins. Although both sequence divergence and polymorphism ofF‐boxgenes well support a broad spectrum of SCF functions, experimental evidence is scarce due to the low number of identified SCF substrates. Taking advantage of the bridge role of Skp1 between F‐box and Cullin1 in the complex, we systematically analyzed the functional influence of a well‐characterizedArabidopsis Skp1‐Like1(ASK1)Dsinsertion allele,ask1, in different Arabidopsis accessions. Through 10 generations of backcrossing with Columbia‐0 (Col‐0), we partially rescued the fertility of this otherwise sterileask1allele in Landsbergerecta, thus providing experimental evidence showing the polymorphic roles of SCF complexes. Thisask1mutant produces twisted rosette leaves, a reduced number of petals, fewer viable pollen grains, and larger embryos and seeds compared to Col‐0. RNA‐Seq‐based transcriptome analysis ofask1uncovered a large spectrum of SCF functions, which is greater than a 10‐fold increase compared with previous studies. We also identified its hyposensitive responses to auxin and abscisic acid treatments and enhanced far‐red light/phyA‐mediated photomorphogenesis. Such diverse roles are consistent with the 20–30% reduction of ubiquitylation events inask1estimated by immunoblotting analysis in this work. Collectively, we conclude that ASK1 is a predominant Skp1 protein in Arabidopsis and that the fertileask1mutant allowed us to uncover a comprehensive set of SCF functions. 
    more » « less
  4. Abstract Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring 1 . Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen 2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils 1,4–6 . The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S -locus cysteine-rich protein/ S -locus protein 11 (SCR/SP11) 2,3 or a signal from UI pollen binds to the SI female determinant S -locus receptor kinase (SRK) 2,3 , recruits FERONIA (FER) 7–9 and activates FER-mediated reactive oxygen species production in SI stigmas 10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class 12–14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops. 
    more » « less
  5. Genome sequencing has uncovered tremendous sequence variation within and between species. In plants, in addition to large variations in genome size, a great deal of sequence polymorphism is also evident in several large multi-gene families, including those involved in the ubiquitin-26S proteasome protein degradation system. However, the biological function of this sequence variation is yet not clear. In this work, we explicitly demonstrated a single origin of retroposed Arabidopsis Skp1-Like ( ASK ) genes using an improved phylogenetic analysis. Taking advantage of the 1,001 genomes project, we here provide several lines of polymorphism evidence showing both adaptive and degenerative evolutionary processes in ASK genes. Yeast two-hybrid quantitative interaction assays further suggested that recent neutral changes in the ASK2 coding sequence weakened its interactions with some F-box proteins. The trend that highly polymorphic upstream regions of ASK1 yield high levels of expression implied negative expression regulation of ASK1 by an as-yet-unknown transcriptional suppression mechanism, which may contribute to the polymorphic roles of Skp1-CUL1-F-box complexes. Taken together, this study provides new evolutionary evidence to guide future functional genomic studies of SCF-mediated protein ubiquitylation. 
    more » « less