Abstract Time‐lapse electrical resistivity tomography (ERT) data are increasingly used to inform the hydrologic dynamics of mountainous environments at the hillslope scale. Despite their popularity and recent advancements in hydrogeophysical inversion methods, few studies have shown how time‐lapse ERT data can be used to determine hydraulic parameters of subsurface water flow models. This study uses synthetic and field‐collected, hillslope‐scale, time‐lapse ERT data to determine subsurface hydraulic properties of a two‐layer, physics‐based, 2‐D vertical flow model with predefined layer and boundary locations. Uncoupled and coupled hydrogeophysical inversion methods are combined with a fine‐earth fraction optimization scheme to reduce the number of parameters needing calibration and interpret the influence of the hydraulic parameters on the hydrologic model predictions. Inversions of synthetic ERT data recover the prescribed fine‐earth fraction bulk density to within 0.1 g cm−3. Field‐collected ERT data from a mountain hillslope result in hydrologic model dynamics that are consistent with previous studies and measured water content data but struggle to capture measured groundwater levels. The uncoupled hydrogeophysical inversion method is more sensitive to changes in hydraulic parameter values of the lower hydrologic model layer than the coupled hydrogeophysical inversion method. Time series of minimum objective function value simulations indicate that periodically collected ERT data may recover hydraulic parameters to a similar level of uncertainty as daily ERT data. Using simple hydrologic model domains within hydrogeophysical inversions shows promise for providing reasonable hydrologic predictions while maintaining relatively simple calibration schemes and should be explored further in future studies.
more »
« less
Application of a model of internal hydraulic jumps
A model devised by Thorpe & Li ( J. Fluid Mech. , vol. 758, 2014, pp. 94–120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.
more »
« less
- PAR ID:
- 10047833
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 834
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 125 to 148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present Atacama Large Millimeter/submillimeter Array observations of SiO, SiS, H2O, NaCl, and SO line emission at ∼30–50 mas resolution. These images map the molecular outflow and disk of Orion Source I (SrcI) on ∼12–20 au scales. Our observations show that the flow of material around SrcI creates a turbulent boundary layer in the outflow from SrcI, which may dissipate angular momentum in the rotating molecular outflow into the surrounding medium. Additionally, the data suggest that the proper motion of SrcI may have a significant effect on the structure and evolution of SrcI and its molecular outflow. As the motion of SrcI funnels material between the disk and the outflow, some material may be entrained into the outflow and accrete onto the disk, creating shocks that excite the NaCl close to the disk surface.more » « less
-
Knowledge gaps about how the ocean melts Antarctica’s ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation. Full-thickness ice fractures, with bases modified by basal melting and convective processes, are observed throughout the area. This new wealth of processes, all active under a single ice shelf, must be considered to accurately predict future Antarctic ice shelf melt.more » « less
-
Abstract The oceanic bottom mixed layer (BML) is a well mixed, weakly stratified, turbulent boundary layer. Adjacent to the seabed, the BML is of intrinsic importance for studying ocean mixing, energy dissipation, particle cycling and sediment-water interactions. While deep-seabed mining of polymetallic nodules is anticipated to commence in the Clarion-Clipperton Zone (CCZ) of the northeastern tropical Pacific Ocean, knowledge gaps regarding the form of the BML and its potentially key influence on the dispersal of sediment plumes generated by deep-seabed mining activities are yet to be addressed. Here, we report recent field observations from the German mining licence area in the CCZ that characterise the structure and variability of the BML locally. Quasi-uniform profiles of potential temperature extending from the seafloor reveal the presence of a spatially and temporally variable BML with an average local thickness of approximately 250 m. Deep horizontal currents in the region have a mean speed of 3.5 cm s$$^{-1}$$ and a maximum speed of 12 cm s$$^{-1}$$ at 18.63 ms above bottom over an 11 month record. The near-bottom currents initially have a net southeastward flow, followed by westward and southward flows with the development of complex, anticyclonic flow patterns. Theoretical predictions and historical data show broad consistency with mean BML thickness but cannot explain the observed heterogeneity of local BML thickness. We postulate that deep pressure anomalies induced by passing surface mesoscale eddies and abyssal thermal fronts could affect BML thickness, in addition to local topographic effects. A simplified transport model is then used to study the influence of the BML on the interplay between turbulent diffusion and sediment settling in the transport of deep-seabed mining induced sediment plumes. Over a range of realistic parameter values, the effects of BML on plume evolution can vary significantly, highlighting that resolving the BML will be a crucial step for accurate numerical modelling of plume dispersal.more » « less
-
Abstract This study investigates whether the thermodynamics of supercell rear-flank outflow can be inferred from the propagation speed and vertical structure of the rear-flank gust front. To quantify the relationship between outflow thermodynamic deficit and gust front structure, CM1 is applied as a two-dimensional cold pool model to assess the vertical slope of cold pools of varying strength in different configurations of ambient shear. The model was run with both free-slip and semislip lower boundary conditions and the results were compared to observations of severe thunderstorm outflow captured by the Texas Tech University Ka-band mobile radars. Simulated cold pools in the free-slip model achieve the propagation speeds predicted by cold pool theory, while cold pool speeds in the semislip model propagate slower. Density current theory is applied to the observed cold pools and predicts the cold pool speed to within about 2 m s−1. Both the free-slip and semislip model results reveal that, in the same sheared flow, the edge of a strong cold pool is less inclined than that of a weaker cold pool. Also, a cold pool in weak ambient shear has a steeper slope than the same cold pool in stronger ambient shear. Nonlinear regressions performed on data from both models capture the proper dependence of slope on buoyancy and shear, but the free-slip model does not predict observed slopes within acceptable error, and the semislip model overpredicts the cold pool slope for all observed cases, but with uncertainty due to shear estimation.more » « less
An official website of the United States government

