skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graphene Inks as Versatile Templates for Printing Tiled Metal Oxide Crystalline Films
Abstract There is great interest in exploiting van der Waals gaps in layered materials as confinement reaction vessels to template the synthesis of new nanosheet structures. The gallery spaces in multilayer graphene oxide, for example, can intercalate hydrated metal ions that assemble into metal oxide films during thermal oxidation of the sacrificial graphene template. This approach offers limited control of structure, however, and does not typically lead to 2D atomic‐scale growth of anisotropic platelet crystals, but rather arrays of simple particles directionally sintered into porous sheets. Here, a new graphene‐directed assembly route is demonstrated that yields fully dense, space‐filling films of tiled metal oxide platelet crystals with tessellated structures. The method relies on colloidal engineering to produce a printable “metallized graphene ink” with accurate control of metal loading, grain size/porosity, composition, and micro/nanomorphologies, and is capable of achieving higher metal–carbon ratio than is possible by intercalation methods. These tiled structures are sufficiently robust to create free standing papers, complex microtextured films, 3D shapes, and metal oxide replicas of natural biotextures.  more » « less
Award ID(s):
1344097
PAR ID:
10047874
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
4
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atomically thin 2D materials are good templates to grow organic semiconductor thin films with desirable features. However, the 2D materials typically exhibit surface roughness and spatial charge inhomogeneity due to nonuniform doping, which can affect the uniform assembly of organic thin films on the 2D materials. A hybrid template is presented for preparation of highly crystalline small‐molecule organic semiconductor thin film that is fabricated by transferring graphene onto a highly ordered self‐assembled monolayer. This hybrid graphene template has low surface roughness and spatially uniform doping, and it yields highly crystalline fullerene thin films with grain sizes >300 nm, which is the largest reported grain size for C60thin films on 2D materials. A graphene/fullerene/pentacene phototransistor fabricated directly on the hybrid template has five times higher photoresponsivity than a phototransistor fabricated on a conventional graphene template supported by a SiO2wafer. 
    more » « less
  2. Abstract In recent decades, extensive studies have been devoted to assembling nanoparticles (NPs) into various ordered structures to achieve novel optical properties. However, it still remains a challenging task to assemble NPs into cyclic one‐dimensional (1D) shapes, such as rings and frames. Herein, we report a directed assembly method to precisely assemble NPs into well‐defined, free‐standing frames using polymer single crystals (PSCs) as the template. Preformed poly(ethylene oxide) (PEO) single crystals were used as the template to direct the crystallization of block copolymer (BCP) poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) (PEO‐b‐P4VP), which directs the gold NPs (AuNPs) to form AuNP frames. By controlling the PSC growth, we were able to, for the first time, precisely tune both the size and width of the AuNP frame. These novel AuNP frames topologically resemble NP nanorings and cyclic polymer chains, and show unique surface plasmon resonance (SPR) behaviors. 
    more » « less
  3. Abstract Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites. 
    more » « less
  4. Abstract Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure–property correlations for materials ordered at this length scale (10–100 nm). A solvent‐evaporation‐induced crystallization method providing access to large (millimeter to centimeter) single‐crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in‐depth crystallographic characterization of single‐crystal block copolymer–preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single‐crystal‐like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure‐based properties in block‐copolymer‐directed metal, semiconductor, and superconductor materials. 
    more » « less
  5. Abstract Electron tomography holds great promise as a tool for investigating the 3D morphologies and internal structures of metal‐organic framework‐based protein biocomposites (protein@MOFs). Understanding the 3D spatial arrangement of proteins within protein@MOFs is paramount for developing synthetic methods to control their spatial localization and distribution patterns within the biocomposite crystals. In this study, the naturally occurring iron oxide mineral core of the protein horse spleen ferritin (Fn) is leveraged as a contrast agent to directly observe individual proteins once encapsulated into MOFs by electron microscopy techniques. This methodology couples scanning electron microscopy, transmission electron microscopy, and electron tomography to garner detailed 2D and 3D structural interpretations of where proteins spatially lie in Fn@MOF crystals, addressing the significant gaps in understanding how synthetic conditions relate to overall protein spatial localization and aggregation. These findings collectively reveal that adjusting the ligand‐to‐metal ratios, protein concentration, and the use of denaturing agents alters how proteins are arranged, localized, and aggregated within MOF crystals. 
    more » « less