skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Sulfamate Esters Guide Selective Radical‐Mediated Chlorination of Aliphatic C−H Bonds
Abstract

Masked alcohols are particularly appealing as directing groups because of the ubiquity of hydroxy groups in organic small molecules. Herein, we disclose a general strategy for aliphatic γ‐C(sp3)−H functionalization guided by a masked alcohol. Specifically, we determine that sulfamate ester derived nitrogen‐centered radicals mediate 1,6‐hydrogen‐atom transfer (HAT) processes to guide γ‐C(sp3)−H chlorination. This reaction proceeds through a light‐initiated radical chain‐propagation process and is capable of installing chlorine atoms at primary, secondary, and tertiary centers.

 
more » « less
NSF-PAR ID:
10047885
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
130
Issue:
1
ISSN:
0044-8249
Page Range / eLocation ID:
p. 302-305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The first example of PdII‐catalyzed γ‐C(sp3)−H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)−H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.

     
    more » « less
  2. Abstract

    The first example of PdII‐catalyzed γ‐C(sp3)−H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)−H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.

     
    more » « less
  3. Abstract

    Direct amination of C(sp3)−H bonds is of broad interest in the realm of C−H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)−H/N−H coupling that exhibits good reactivity with both sp2and sp3N−H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N−I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C−H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.

     
    more » « less
  4. Abstract

    Direct amination of C(sp3)−H bonds is of broad interest in the realm of C−H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)−H/N−H coupling that exhibits good reactivity with both sp2and sp3N−H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N−I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C−H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.

     
    more » « less
  5. Abstract

    Direct oxidative C(sp)−H/C(sp3)−H cross‐coupling offers an ideal and environmentally benign protocol for C(sp)−C(sp3) bond formations. As such, reactivity and site‐selectivity with respect to C(sp3)−H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron‐catalyzed/silver‐mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3‐dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3)−H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon‐centered radical species.

     
    more » « less