Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree,
- Award ID(s):
- 0953716
- NSF-PAR ID:
- 10048084
- Date Published:
- Journal Name:
- International Journal of Evolutionary Biology
- Volume:
- 2012
- ISSN:
- 2090-8032
- Page Range / eLocation ID:
- 1 to 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree,P. subserratum . -
Abstract Selection along environmental gradients can drive reproductive isolation and speciation. Among fishes, salinity is a major factor limiting species distributions, and despite its importance in generating species diversity, speciation events between marine and freshwater are rare. Here, we tested for mechanisms of reproductive isolation between locally adapted freshwater and brackish water‐native populations of killifish,
Fundulus heteroclitus , from either side of a hybrid zone along a salinity gradient. There was evidence for pre‐zygotic endogenous reproductive isolation with reduced fertilization success between crosses of freshwater‐native males and brackish water‐native females. Exogenous pre‐zygotic isolation was also present where females had highest fertilization in their native salinity. We used a replicated mass spawning design to test for mate choice in both brackish and fresh water. After genotyping 187 parents and 2523 offspring at 2347 SNPs across the genome, 85% of offspring were successfully assign to their parents. However, no reinforcing mate choice was observed. These results therefore demonstrate emerging, yet limited, reproductive isolation and incipient speciation across a marine to freshwater salinity gradient and suggest that both endogenous and exogenous mechanisms, but not assortative mating, contribute to divergence. -
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.more » « less
-
Abstract Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Abstract
Hybrid seed inviability and other postmating reproductive barriers isolate species in Mimulus section Eunanus. Variation in seed size may help explain hybrid seed failure. Whole-genome sequencing indicates a complex history of divergence, including signals of ancient introgression and cryptic diversity.
-
Abstract The genetic dissection of reproductive barriers between diverging lineages provides enticing clues into the origin of species. One strategy uses linkage analysis in experimental crosses to identify genomic locations involved in phenotypes that mediate reproductive isolation. A second framework searches for genomic regions that show reduced rates of exchange across natural hybrid zones. It is often assumed that these approaches will point to the same loci, but this assumption is rarely tested. In this perspective, we discuss the factors that determine whether loci connected to postzygotic reproductive barriers in the laboratory are inferred to reduce gene flow in nature. We synthesize data on the genetics of postzygotic isolation in house mice, one of the most intensively studied systems in speciation genetics. In a rare empirical comparison, we measure the correspondence of loci tied to postzygotic barriers via genetic mapping in the laboratory and loci at which gene flow is inhibited across a natural hybrid zone. We find no evidence that the two sets of loci overlap beyond what is expected by chance. In light of these results, we recommend avenues for empirical and theoretical research to resolve the potential incongruence between the two predominant strategies for understanding the genetics of speciation.