More Like this
-
This study investigates the shear rate dependent margination of micro-particles (MPs) with different shapes in blood flow through numerical simulations. We develop a multiscale computational model to handle the fluid–structure interactions involved in the blood flow simulations. The lattice Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are coupled together by the immersed boundary method (IBM). The shear rate dependent margination of sphere MPs is firstly investigated. We find that margination of sphere MPs dramatically increases with the increment of wall shear rate ω under 800 s −1 , induced by the breaking of rouleaux in blood flow. However, the margination probability only slowly grows when ω > 800 s −1 . Furthermore, the shape effect of MPs is examined by comparing the margination behaviors of sphere-like, oblate-like and prolate-like MPs under different wall shear rates. We find that the margination of MPs is governed by the interplay of two factors: hydrodynamic collisions with RBCs including the collision frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate poor performance in one process such as collision frequency may stand out in the other process like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better performance in both the collision with RBCs and near wall dynamics. Additionally, we find there exists a transition shear rate region 700 s −1 < ω < 900 s −1 for all of these MPs: the margination probability dramatically increases with the shear rate below this region and slowly grows above this region, similar to sphere MPs. We further use the surface area to volume ratio (SVR) to distinguish different shaped MPs and illustrate their shear rate dependent margination in a contour in the shear rate–SVR plane. It is of significance that we can approximately predict the margination of MPs with a specific SVR. All these simulation results can be potentially applied to guide the design of micro-drug carriers for biomedical applications.more » « less
-
Abstract Understanding the nature of the luminous 1991T-like supernovae (SNe) is of great importance to SN cosmology as they are likely to have been more common in the early Universe. In this paper, we explore the observational properties of 1991T-like SNe to study their relationship to other luminous, slow-declining Type Ia supernovae (SNe Ia). From the spectroscopic and photometric criteria defined in Phillips et al., we identify 17 1991T-like SNe from the literature. Combining these objects with 10 1991T-like SNe from the Carnegie Supernova Project-II, the spectra, light curves, and colors of these events, along with their host galaxy properties, are examined in detail. We conclude that 1991T-like SNe are closely related in essentially all of their UV, optical, and near-infrared properties—as well as their host galaxy parameters—to the slow-declining subset of Branch core-normal SNe and to the intermediate 1999aa-like events, forming a continuum of luminous SNe Ia. The overriding difference between these three subgroups appears to be the extent to which56Ni mixes into the ejecta, producing the premaximum spectra dominated by Fe
iii absorption, the broader UV light curves, and the higher luminosities that characterize the 1991T-like events. Nevertheless, the association of 1991T-like SNe with the rare Type Ia circumstellar material SNe would seem to run counter to this hypothesis, in which case 1991T-like events may form a separate subclass of SNe Ia, possibly arising from single-degenerate progenitor systems. -
Murray, James (Ed.)Abstract TPX2 proteins were first identified in vertebrates as a key mitotic spindle assembly factor. Subsequent studies demonstrated that TPX2 is an intricate protein, with functionally and structurally distinct domains and motifs including Aurora kinase-binding, importin-binding, central microtubule-binding, and C-terminal TPX2 conserved domain, among others. The first plant TPX2-like protein, WAVE-DAMPENED2, was identified in Arabidopsis as a dominant mutation responsible for reducing the waviness of roots grown on slanted agar plates. Each plant genome encodes at least one ‘canonical’ protein with all TPX2 domains and a family of proteins (20 in Arabidopsis) that diversified to contain only some of the domains. Although all plant TPX2-family proteins to date bind microtubules, they function in distinct processes such as cell division, regulation of hypocotyl cell elongation by hormones and light signals, vascular development, or abiotic stress tolerance. Consequently, their expression patterns, regulation, and functions have diverged considerably. Here we summarize the current body of knowledge surrounding plant TPX2-family proteins.more » « less