skip to main content


Title: 1,8-Bis(borylamido)naphthalene Complexes of Lithium and Zinc(II) Including a Zinc(II) Isocyanide Adduct: 1,8-Bis(borylamido)naphthalene Complexes of Lithium and Zinc(II) Including a Zinc(II) Isocyanide Adduct
NSF-PAR ID:
10048295
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2017
Issue:
46
ISSN:
1434-1948
Page Range / eLocation ID:
5507 to 5514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A room temperature stable Y(ii)bis(amide) has been prepared and fully characterized. The complex reacts withtert-butylisocyanide to make a rare example of a transition metal isocyanide, CN–Y(NHAr*)2.

     
    more » « less
  2. The development of the multivalent electrolytes is a critical component to advance polyvalent energy storage technology. In this work, a new and simple nonaqueous zinc electrolyte is developed and investigated where a secondary amine is introduced as a cosolvent. The addition of dimethylamine (DMA) as a cosolvent in THF facilitates the solubilization of Zinc (II) bis(trifluoromethanesulfonyl)imde (Zn(TFSI)2) and results in a homogeneous electrolyte with reversible plating of zinc achieved at high coulombic efficiencies. The electrochemical properties of the developed electrolyte and the effects of the cosolvent and salt concentrations are systematically investigated. It was found that increasing the ratio of the cosolvent DMA in THF for a Zn(TFSI)2electrolyte leads to more facile kinetics, better ion solubilization, and higher ion mobility evidenced by up a significant increase in conductivity as well as the plating/stripping current densities. Increased Zn(TFSI)2salt concentration in a 2.0 M DMA in THF solvent mixture not only leads to a higher current density and conductivity, but also a higher molar conductivity due to a redissociation mechanism. The findings in this study are relevant and important to further understand and characterize multivalent electrolytes from a simple and effective electrolyte design strategy.

     
    more » « less