skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Subsurface Nonlinear Dynamical Heating and ENSO Asymmetry: Subsurface NDH and ENSO asymmetry
NSF-PAR ID:
10048306
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
24
ISSN:
0094-8276
Page Range / eLocation ID:
p. 12,427-12,435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamics driving the El Niño–Southern Oscillation (ENSO) over longer-than-interannual time scales are poorly understood. Here, we compile thermocline temperature records of the Indo-Pacific warm pool over the past 25,000 years, which reveal a major warming in the Early Holocene and a secondary warming in the Middle Holocene. We suggest that the first thermocline warming corresponds to heat transport of southern Pacific shallow overturning circulation driven by June (austral winter) insolation maximum. The second thermocline warming follows equatorial September insolation maximum, which may have caused a steeper west-east upper-ocean thermal gradient and an intensified Walker circulation in the equatorial Pacific. We propose that the warm pool thermocline warming ultimately reduced the interannual ENSO activity in the Early to Middle Holocene. Thus, a substantially increased oceanic heat content of the warm pool, acting as a negative feedback for ENSO in the past, may play its role in the ongoing global warming. 
    more » « less
  2. Abstract

    A cyclostationary linear inverse model (CSLIM) is used to investigate the seasonal growth of tropical Pacific Ocean El Niño–Southern Oscillation (ENSO) events with canonical, central Pacific (CP), or eastern Pacific (EP) sea surface temperature (SST) characteristics. Analysis shows that all types of ENSO events experience maximum growth toward final states occurring in November and December. ENSO events with EP characteristics also experience growth into May and June, but CP events do not. A single dominant “ENSO mode,” growing from an equatorial heat content anomaly into a characteristic ENSO-type SST pattern in about 9 months (consistent with the delayed/recharge oscillator model of ENSO), is essential for the predictable development of all ENSO events. Notably, its seasonality is responsible for the late-calendar-year maximum in ENSO amplification. However, this ENSO mode alone does not capture the observed growth and evolution of diverse ENSO events, which additionally involve the seasonal evolution of other nonorthogonal Floquet modes. EP event growth occurs when the ENSO mode is initially “covered up” in combination with other Floquet modes. The ENSO mode’s slow seasonal evolution allows it to emerge while the other modes rapidly evolve and/or decay, leading to strongly amplifying and more predictable EP events. CP events develop when the initial state has a substantial contribution from Floquet modes with meridional mode–like SST structures. Thus, while nearly all ENSO events involve the seasonally varying ENSO-mode dynamics, the diversity and predictability of ENSO events cannot be understood without identifying contributions from the remaining Floquet modes.

    Significance Statement

    The purpose of this study is to identify structures that lead to seasonal growth of diverse types of El Niño–Southern Oscillation (ENSO) events. An important contribution from this study is that it uses an observationally constrained, empirically derived seasonal model. We find that processes affecting the evolution of diverse ENSO events are strongly seasonally dependent. ENSO events with eastern equatorial Pacific sea surface temperature (SST) characteristics are closely related to a single “ENSO mode” that resembles theoretical models of ENSO variability. ENSO events that have central equatorial Pacific SST characteristics include contributions from additional “meridional mode” structures that evolve via different physical processes. These findings are an important step in evaluating the seasonal predictability of ENSO diversity.

     
    more » « less