skip to main content


Title: Room Temperature Ni 0 /PCy 3 -Catalyzed Coupling Reactions of Aryl Arenesulfonates with Bis(pinacolato)diboron: Room Temperature Ni 0 /PCy 3 -Catalyzed Coupling Reactions of Aryl Arenesulfonates with Bis(pinacolato)diboron
NSF-PAR ID:
10048603
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
2017
Issue:
47
ISSN:
1434-193X
Page Range / eLocation ID:
p. 7087-7090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Paired redox‐neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non‐toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C−C cross‐coupling reactions. Here, we report the electro/Ni dual‐catalyzed redox‐neutral decarboxylative C(sp3)−C(sp2) cross‐coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar−Br bond by a NiI‐bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2‐phenoxy propionic acid, undergo oxidative decarboxylation to form carbon‐based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)−C(sp2) cross‐coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual‐catalyzed cross‐coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)−C(sp2) cross‐coupling and represent a promising method for the construction of the C(sp3)−C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow‐synthesis technology.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. ABSTRACT

    Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters witht‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611

     
    more » « less
  5. Abstract

    The first cobalt‐catalyzed cross‐coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3and NHCs (NHC=N‐heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C−O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)−C(sp3) cross‐coupling of C−O electrophiles, circumventing isomerization and β‐hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C−O cross‐coupling sets the stage for a sequential cross‐coupling by exploiting the orthogonal selectivity of the catalytic system.

     
    more » « less