skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Climate change impacts on selected global rangeland ecosystem services
Abstract

Rangelands are Earth's dominant land cover and are important providers of ecosystem services. Reliance on rangelands is projected to grow, thus understanding the sensitivity of rangelands to future climates is essential. We used a new ecosystem model of moderate complexity that allows, for the first time, to quantify global changes expected in rangelands under future climates. The mean global annual net primary production (NPP) may decline by 10 g C m−2 year−1in 2050 under Representative Concentration Pathway (RCP) 8.5, but herbaceousNPPis projected to increase slightly (i.e., average of 3 g C m−2 year−1). Responses vary substantially from place‐to‐place, with large increases in annual productivity projected in northern regions (e.g., a 21% increase in productivity in theUSand Canada) and large declines in western Africa (−46% in sub‐Saharan western Africa) and Australia (−17%). Soil organic carbon is projected to increase in Australia (9%), the Middle East (14%), and central Asia (16%) and decline in many African savannas (e.g., −18% in sub‐Saharan western Africa). Livestock are projected to decline 7.5 to 9.6%, an economic loss of from $9.7 to $12.6 billion. Our results suggest that forage production in Africa is sensitive to changes in climate, which will have substantial impacts on the livelihoods of the more than 180 million people who raise livestock on those rangelands. Our approach and the simulation tool presented here offer considerable potential for forecasting future conditions, highlight regions of concern, and support analyses where costs and benefits of adaptations and policies may be quantified. Otherwise, the technical options and policy and enabling environment that are needed to facilitate widespread adaptation may be very difficult to elucidate.

 
more » « less
NSF-PAR ID:
10048606
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
3
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1382-1393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes inNPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations betweenNPPand precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta‐analytical techniques to search for generalities and asymmetries of abovegroundNPP(ANPP) and belowgroundNPP(BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) ofBNPPwas similar under precipitation additions and reductions, butANPPwas more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven byANPPresponses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider howANPPandBNPPresponses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.

     
    more » « less
  2. Abstract

    In semiarid regions, vegetation constraints on plant growth responses to precipitation (PPT) are hypothesized to place an upper limit on net primary productivity (NPP), leading to predictions of future shifts from currently defined linear to saturatingNPPPPTrelationships as increases in both dry and wetPPTextremes occur. We experimentally tested this prediction by imposing a replicated gradient of growing seasonPPT(GSP,n = 11 levels,n = 4 replicates), ranging from the driest to wettest conditions in the 75‐yr climate record, within a semiarid grassland. We focused on responses of two key ecosystem processes: abovegroundNPP(ANPP) and soil respiration (Rs).ANPPandRsboth exhibited greater relative responses to wet vs. dryGSPextremes, with a linear relationship consistently best explaining the response of both processes toGSP. However, this responsiveness toGSPpeaked at moderate levels of extremity for both processes, and declined at the most extremeGSPlevels, suggesting that greater sensitivity ofANPPandRsto wet vs. dry conditions may diminish under increased magnitudes ofGSPextremes. Underlying these responses was rapid plant compositional change driven by increased forb production and cover asGSPtransitioned to extreme wet conditions. This compositional shift increased the magnitude ofANPPresponses to wetGSPextremes, as well as the slope and variability explained in theANPPGSPrelationship. Our findings suggest that rapid plant compositional change may act as a mediator of semiarid ecosystem responses to predicted changes inGSPextremes.

     
    more » « less
  3. Abstract

    Soils are an important source ofNO, particularly in dry lands because of trade‐offs that develop between biotic and abioticNO‐producing processes when soils dry out. Understanding how drier climates may offset the balance of these trade‐offs as soils transition toward more arid states is, therefore, critical to estimating globalNObudgets, especially because drylands are expected to increase in size. We measuredNOemission pulses after wetting soils from similar lithologies along an altitudinal gradient in the Sierra Nevada,CA, where mean annual precipitation varied from 670 to 1500 mm. Along the gradient, we measured fieldNOemissions, and used chloroform in the laboratory to reduce microbial activity and partition between biotic and abioticNO‐producing processes (i.e., chemodenitrification). FieldNOemission pulses were lowest in the acidic andSOM‐rich soils (4–72 ngNO‐N m−2s−1), but were highest in the high‐elevation barren site (~560 ngNO‐N m−2s−1). In the laboratory,NOemission pulses were up to 19× greater in chloroform‐treated soils than in the controls, and these abiotic pulses increased with elevation aspHdecreased (6.2–4.4) and soil organic matter (SOM) increased (18–157 mg C g−1). Drought can shift the balance between the biotic and abiotic processes that produceNO, favoring chemodenitrification during periods when biological processes become stressed. Acidic andSOM‐rich soils, which typically develop under mesic conditions, are most vulnerable to N loss viaNOas interactions betweenpH,SOM, and drought stimulate chemodenitrification.

     
    more » « less
  4. Abstract

    Savanna ecosystems contribute ~30% of global net primary production (NPP), but they vary substantially in composition and function, specifically in the understory, which can result in complex responses to environmental fluctuations. We tested how understory phenology and its contribution to ecosystem productivity within a longleaf pine ecosystem varied at two ends of a soil moisture gradient (mesic and xeric). We used the Normalized Difference Vegetation Index (NDVI) of the understory and ecosystem productivity estimates from eddy covariance systems to understand how variation in the understory affected overall ecosystem recovery from disturbances (drought and fire). We found that the mesic site recovered more rapidly from the disturbance of fire, compared to the xeric site, indicated by a faster increase inNDVI. During drought, understoryNDVIat the xeric site decreased less compared to the mesic site, suggesting adaptation to lower soil moisture conditions. Our results also show large variation within savanna ecosystems in the contribution of the understory to ecosystem productivity and recovery, highlighting the critical need to further subcategorize global savanna ecosystems by their structural features, to accurately predict their contribution to global estimates ofNPP.

     
    more » « less
  5. Abstract

    Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta‐analysis to compare ecosystemCO2fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site‐years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided largeCO2sinks, while inland wetlands provided smallCO2sinks or were nearlyCO2neutral. The annualCO2sink strength was 93.15 and 208.37 g C m−2for inland and coastal wetlands, respectively. AnnualCO2fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined,MATandMAPexplained 71%, 54%, and 57% of the variations inGPP,Re, andNEP, respectively. TheCO2fluxes of wetlands were also related to leaf area index (LAI). TheCO2fluxes also varied with water table depth (WTD), although the effects ofWTDwere not statistically significant.NEPwas jointly determined byGPPandRefor both inland and coastal wetlands. However, theNEP/ReandNEP/GPPratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting ofCO2fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks.

     
    more » « less