skip to main content


Title: Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model: Direct Meltwater Effect in δ 18 O Records
NSF-PAR ID:
10048798
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
24
ISSN:
0094-8276
Page Range / eLocation ID:
p. 12,501-12,510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isotopic substitution is a useful method to study the influence of nuclear motion on the kinetics of charge transport in semiconductors. However, in organic semiconductors, no observable isotope effect on field‐effect mobility has been reported. To understand the charge transport mechanism in rubrene, the benchmark organic semiconductor, crystals of fully isotopically substituted rubrene,13C‐rubrene (13C42H28), are synthesized and characterized. Vapor‐grown13C‐rubrene single crystals have the same crystal structure and quality as native rubrene crystals (i.e., rubrene with a natural abundance of carbon isotopes). The characteristic transport signatures of rubrene, including room temperature hole mobility over 10 cm2V−1s−1, intrinsic band‐like transport, and clear Hall behavior in the accumulation layer of air‐gap transistors, are also observed for13C‐rubrene crystals. The field‐effect mobility distributions based on 74 rubrene and13C‐rubrene devices, respectively, reveal that13C isotopic substitution produces a 13% reduction in the hole mobility of rubrene. The origin of the negative isotope effect is linked to the redshift of vibrational frequencies after13C‐substitution, as demonstrated by computer simulations based on the transient localization (dynamic disorder) scenario. Overall, the data and analysis provide an important benchmark for ongoing efforts to understand transport in ordered organic semiconductors.

     
    more » « less
  2. Abstract

    Carbon isotope (δ13C) records from marine sediments and sedimentary rocks have been extensively used in Cenozoic chemostratigraphy. The early Paleogene interval in particular has received exceptional attention because negative carbon isotope excursions (CIEs) documented in the sedimentary record, for example, at the Paleocene Eocene Thermal Maximum (PETM), ca ∼56 Ma, are believed to reflect significant global carbon cycle perturbations during the warmest interval of the Cenozoic era. However, while bulk carbonate δ13C values exhibit robust correlations across widely separated marine sedimentary basins, their absolute values and magnitude of CIEs vary spatially, especially over time intervals characterized by major deviations in global carbon cycling. Moreover, bulk carbonates in open‐marine environments are an ensemble of different components, each with a distinct isotope composition. Consequently, a comprehensive interpretation of the bulk‐δ13C record requires an understanding of co‐evolution of these components. In this study, we dissect sediments, from the late Paleocene‐early Eocene interval, at ODP Site 1209 (Shatsky Rise, Pacific Ocean) to investigate how a temporally varying bulk carbonate ensemble influences the overall carbon isotope record. A set of 45 samples were examined for δ13C and δ18O compositions, as bulk and individual size fractions. We find a significant increase in coarse‐fraction abundance across the PETM, driven by a changing community structure of calcifiers, modulating the size of the CIE at Site 1209 and thus making it distinct from those recorded at other open‐marine sites. These results highlight the importance of biogeography in the marine stable isotope record, especially when isotope excursions are driven by climate‐ and/or carbon cycle changes. In addition, community composition changes will alter the interpretation of weight percent coarse fraction as proxy for carbonate dissolution.

     
    more » « less