skip to main content

Title: Transfer matrix theory of polymer complex coacervation
Oppositely charged polyelectrolytes can undergo a macroscopic, associative phase separation in solution, via a process known as complex coacervation. Significant recent effort has gone into providing a clear, physical picture of coacervation; most work has focused on improving the field theory picture that emerged from the classical Voorn–Overbeek theory. These methods have persistent issues, however, resolving the molecular features that have been shown to play a major role in coacervate thermodynamics. In this paper, we outline a theoretical approach to coacervation based on a transfer matrix formalism that is an alternative to traditional field-based approaches. We develop theoretical arguments informed by experimental observation and simulation, which serve to establish an analytical expression for polymeric complex coacervation that is consistent with the molecular features of coacervate phases. The analytical expression provided by this theory is in a form that can be incorporated into more complicated theoretical or simulation formalisms, and thus provides a starting point for understanding coacervate-driven self-assembly or biophysics.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Soft Matter
Page Range / eLocation ID:
7001 to 7012
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oppositely-charged polyelectrolytes can undergo a liquid–liquid phase separation in a salt solution, resulting in a polymer-dense ‘coacervate’ phase that has found use in a wide range of applications from food science to self-assembled materials. Coacervates can be tuned for specific applications by varying parameters such as salt concentration and valency, polyelectrolyte length, and polyelectrolyte identity. Recent simulation and theory has begun to clarify the role of molecular structure on coacervation phase behavior, especially for common synthetic polyelectrolytes that exhibit high charge densities. In this manuscript, we use a combination of transfer matrix theory and Monte Carlo simulation to understand at a physical level how a range of molecular features, in particular polymer architecture and stiffness, and salt valency can be used to design the phase diagrams of these materials. We demonstrate a physical picture of how the underlying entropy-driven process of complex coacervation is affected by this wide range of physical attributes. 
    more » « less
  2. Coacervation is a common phenomenon in natural polymers and has been applied to synthetic materials systems for coatings, adhesives, and encapsulants. Single-component coacervates are formed when block polyampholytes exhibit self-coacervation, phase separating into a dense liquid coacervate phase rich in the polyampholyte coexisting with a dilute supernatant phase, a process implicated in the liquid–liquid phase separation of intrinsically disordered proteins. Using fully fluctuating field-theoretic simulations using complex Langevin sampling and complementary molecular-dynamics simulations, we develop molecular design principles to connect the sequenced charge pattern of a polyampholyte with its self-coacervation behavior in solution. In particular, the lengthscale of charged blocks and number of connections between oppositely charged blocks are shown to have a dramatic effect on the tendency to phase separate and on the accessible chain conformations. The field and particle-based simulation results are compared with analytical predictions from the random phase approximation (RPA) and postulated scaling relationships. The qualitative trends are mostly captured by the RPA, but the approximation fails catastrophically at low concentration.

    more » « less
  3. Oppositely-charged polymers can undergo an associative phase separation process known as complex coacervation, which is driven by the electrostatic attraction between the two polymer species. This driving force for phase separation can be harnessed to drive self-assembly, via pairs of block copolyelectrolytes with opposite charge and thus favorable coulombic interactions. There are few predictions of coacervate self-assembly phase behavior due to the wide variety of molecular and environmental parameters, along with fundamental theoretical challenges. In this paper, we use recent advances in coacervate theory to predict the solution-phase assembly of diblock polyelectrolyte pairs for a number of molecular design parameters (charged block fraction, polymer length). Phase diagrams show that self-assembly occurs at high polymer, low salt concentrations for a range of charge block fractions. We show that we qualitatively obtain limiting results seen in the experimental literature, including the emergence of a high polymer-fraction reentrant transition that gives rise to a self-compatibilized homopolymer coacervate behavior at the limit of high charge block fraction. In intermediate charge block fractions, we draw an analogy between the role of salt concentration in coacervation-driven assembly and the role of temperature in χ -driven assembly. We also explore salt partitioning between microphase separated domains in block copolyelectrolytes, with parallels to homopolyelectrolyte coacervation. 
    more » « less
  4. Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly( l -glutamate) and racemic poly( d , l -glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly( l -lysine) and poly( l -glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic. 
    more » « less
  5. The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure–function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein's binodal phase boundary. Protein concentrations over 100 mg mL −1 were achieved in the coacervate phase, with concentrations dependent on the tag polypeptide sequence covalently attached to the globular protein domain. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids in the tag polypeptide sequence alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest. 
    more » « less