In 1990 Bender, Canfield, and McKay gave an asymptotic formula for the number of connected graphs on
We study a new geometric bootstrap percolation model,
- PAR ID:
- 10049267
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Random Structures & Algorithms
- Volume:
- 52
- Issue:
- 4
- ISSN:
- 1042-9832
- Page Range / eLocation ID:
- p. 597-616
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract with m edges, whenever and . We give an asymptotic formula for the number of connected r‐uniform hypergraphs on with m edges, whenever is fixed and with , that is, the average degree tends to infinity. This complements recent results of Behrisch, Coja‐Oghlan, and Kang (the case ) and the present authors (the case , ie, “nullity” or “excess” o (n )). The proof is based on probabilistic methods, and in particular on a bivariate local limit theorem for the number of vertices and edges in the largest component of a certain random hypergraph. The arguments are much simpler than in the sparse case; in particular, we can use “smoothing” techniques to directly prove the local limit theorem, without needing to first prove a central limit theorem. -
Abstract It is proved that for every countable structure
and a computable successor ordinal α there is a countable structure which is ‐least among all countable structures such that is Σ‐definable in the αth jump . We also show that this result does not hold for the limit ordinal . Moreover, we prove that there is no countable structure with the degree spectrum for . -
Abstract Let
be the random directed graph on n vertices where each of thepossible arcs is present independently with probability p . A celebrated result of Frieze shows that ifthen typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in is typically . We also prove a hitting‐time version of this statement, showing that in the random directed graph process, as soon as every vertex has in‐/out‐degrees at least 1, there are typically directed Hamilton cycles. -
Abstract A graph is said to be
‐universal if it contains every graph with n vertices and maximum degree at most Δ as a subgraph. Dellamonica, Kohayakawa, Rödl and Ruciński used a “matching‐based” embedding technique introduced by Alon and Füredi to show that the random graphis asymptotically almost surely ‐universal for , a threshold for the property that every subset of Δ vertices has a common neighbor. This bound has become a benchmark in the field and many subsequent results on embedding spanning graphs of maximum degree Δ in random graphs are proven only up to this threshold. We take a step towards overcoming limitations of former techniques by showing that is almost surely ‐universal for . -
Abstract A graph
G is said to be 2‐divisible if for all (nonempty) induced subgraphsH ofG ,can be partitioned into two sets such that and . (Here denotes the clique number of G , the number of vertices in a largest clique ofG ). A graphG is said to be perfectly divisible if for all induced subgraphsH ofG ,can be partitioned into two sets such that is perfect and . We prove that if a graph is ‐free, then it is 2‐divisible. We also prove that if a graph is bull‐free and either odd‐hole‐free or P 5‐free, then it is perfectly divisible.