skip to main content


Title: TerEx Toolbox for semi-automated selection of fluvial terrace and floodplain features from lidar: AUTOMATED TERRACE SELECTION
Award ID(s):
1209445
NSF-PAR ID:
10049585
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
39
Issue:
5
ISSN:
0197-9337
Page Range / eLocation ID:
569 to 580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an effective machine learning method for malicious activity detection in enterprise security logs. Our method involves feature engineering, or generating new features by applying operators on features of the raw data. We generate DNF formulas from raw features, extract Boolean functions from them, and leverage Fourier analysis to generate new parity features and rank them based on their highest Fourier coefficients. We demonstrate on real enterprise data sets that the engineered features enhance the performance of a wide range of classifiers and clustering algorithms. As compared to classification of raw data features, the engineered features achieve up to 50.6% improvement in malicious recall, while sacrificing no more than 0.47% in accuracy. We also observe better isolation of malicious clusters, when performing clustering on engineered features. In general, a small number of engineered features achieve higher performance than raw data features according to our metrics of interest. Our feature engineering method also retains interpretability, an important consideration in cyber security applications. 
    more » « less
  2. Arbey, Alexandre ; Bélanger, G. ; Desai, Nishita ; Gonzalo, Tomas ; Harlander, Robert V. (Ed.)
    A trio of automated collider event analysis tools are described and demonstrated, in the form of a quick-start tutorial. AEACuS interfaces with the standard MadGraph/MadEvent, Pythia, and Delphes simulation chain, via the Root file output. An extensive algorithm library facilitates the computation of standard collider event variables and the transformation of object groups (including jet clustering and substructure analysis). Arbitrary user-defined variables and external function calls are also supported. An efficient mechanism is provided for sorting events into channels with distinct features. RHADAManTHUS generates publication-quality one- and two-dimensional histograms from event statistics computed by AEACuS, calling MatPlotLib on the back end. Large batches of simulation (representing either distinct final states and/or oversampling of a common phase space) are merged internally, and per-event weights are handled consistently throughout. Arbitrary bin-wise functional transformations are readily specified, e.g. for visualizing signal-to-background significance as a function of cut threshold. MInOS implements machine learning on computed event statistics with XGBoost. Ensemble training against distinct background components may be combined to generate composite classifications with enhanced discrimination. ROC curves, as well as score distribution, feature importance, and significance plots are generated on the fly. Each of these tools is controlled via instructions supplied in a reusable cardfile, employing a simple, compact, and powerful meta-language syntax. 
    more » « less
  3. Cellular networks are constantly evolving due to frequent changes in radio access and end user equipment technologies, dynamic applications and associated traffic mixes. Network upgrades should be performed with extreme caution since millions of users heavily depend on the cellular networks for a wide range of day to day tasks, including emergency and alert notifications. Before upgrading the entire network, it is important to conduct field evaluation of upgrades. Field evaluations are typically cumbersome and can be time consuming; however if done correctly they can help alleviate a lot of the deployment issues in terms of service quality degradation. The choice and number of field test locations have significant impacts on the time-to-market as well as confidence in how well various network upgrades will work out in the rest of the network. In this paper, we propose a novel approach – Reflection to automatically determine where to conduct the upgrade field tests in order to accurately identify important features that affect the upgrade. We demonstrate the effectiveness of Reflection using extensive evaluation based on real traces collected from a major US cellular network as well as synthetic traces. 
    more » « less