Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high‐quality few‐layer and thin‐film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin‐film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field‐effect mobility of the synthesized BP thin film is found to be around 160 cm2V−1s−1along armchair direction and reaches up to about 200 cm2V−1s−1at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high‐quality BP devices and circuits.
Few‐layer black phosphorus (BP) has emerged as one of the most promising candidates for post‐silicon electronic materials due to its outstanding electrical and optical properties. However, lack of large‐scale BP thin films is still a major roadblock to further applications. The most widely used methods for obtaining BP thin films are mechanical exfoliation and liquid exfoliation. Herein, a method of directly synthesizing continuous BP thin films with the capability of patterning arbitrary shapes by employing ultrafast laser writing with confinement is reported. The physical mechanism of confined laser metaphase transformation is understood by molecular dynamics simulation. Ultrafast laser ablation of BP layer under confinement can induce transient nonequilibrium high‐temperature and high‐pressure conditions for a few picoseconds. Under optimized laser intensity, this process induces a metaphase transformation to form a crystalline BP thin film on the substrate. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy techniques are utilized to characterize the morphology of the resulting BP thin films. Field‐effect transistors are fabricated on the BP films to study their electrical properties. This unique approach offers a general methodology to mass produce large‐scale patterned BP films with a one‐step manufacturing process that has the potential to be applied to other 2D materials.
more » « less- NSF-PAR ID:
- 10049687
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 30
- Issue:
- 10
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Starting with the discovery of graphene in 2004, the interest in two‐dimensional materials since then has been exponentially growing. Across many disciplines, their exceptional electrical, chemical, thermal, and optical properties have drawn considerable attention that has created an entire field within a decade of their discovery. Driven by the mechanical exfoliation technique that allows for the quick exploration of these two‐dimensional materials and their novel devices, joint efforts have been made in order to understand and exploit their potential, consequently leading to the development of their large‐scale growth. This review focuses on recent studies using ultrafast laser spectroscopy that have revealed the photocarrier dynamics in two‐dimensional materials and laid the foundation of their behavior. We provide a brief introduction on ultrafast laser spectroscopy, discuss several aspects of the photocarrier dynamics, and conclude with our perspective on future developments.
-
Heterostructures of ferromagnetic (FM) and noble metal (NM) thin films have recently attracted considerable interest as viable platforms for the ultrafast generation, control, and transduction of light-induced spin currents. In such systems, an ultrafast laser can generate a transient spin current in the FM layer, which is then converted to a charge current at the FM/NM interface due to strong spin–orbit coupling in the NM layer. Whether such conversion can happen in a single material and how the resulting spin current can be quantified are open questions under active study. Here, we report ultrafast THz emission from spin–charge conversion in a bare FeRh thin film without any NM layer. Our results highlight that the magnetic material by itself can enable spin–charge conversion in the same order as that in a FM/NM heterostructure. We further propose a simple model to estimate the light-induced spin current in FeRh across its metamagnetic phase transition temperature. Our findings have implications for the study of the ultrafast dynamics of magnetic order in quantum materials using THz emission spectroscopy.
-
Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.more » « less
-
Abstract With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed.more » « less