skip to main content


Title: Double/debiased machine learning for treatment and structural parameters: Double/debiased machine learning
Award ID(s):
1757140
NSF-PAR ID:
10049689
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Econometrics Journal
Volume:
21
Issue:
1
ISSN:
1368-4221
Page Range / eLocation ID:
p. C1-C68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income. 
    more » « less
  3. Debiased machine learning is a meta-algorithm based on bias correction and sample splitting to calculate confidence intervals for functionals, i.e., scalar summaries, of machine learning algorithms. For example, an analyst may seek the confidence interval for a treatment effect estimated with a neural network. We present a non-asymptotic debiased machine learning theorem that encompasses any global or local functional of any machine learning algorithm that satisfies a few simple, interpretable conditions. Formally, we prove consistency, Gaussian approximation and semiparametric efficiency by finite-sample arguments. The rate of convergence is $n^{-1/2}$ for global functionals, and it degrades gracefully for local functionals. Our results culminate in a simple set of conditions that an analyst can use to translate modern learning theory rates into traditional statistical inference. The conditions reveal a general double robustness property for ill-posed inverse problems. 
    more » « less
  4. Many causal and policy effects of interest are defined by linear functionals of high-dimensional or non-parametric regression functions. Root-n consistent and asymptotically normal estimation of the object of interest requires debiasing to reduce the effects of regularization and/or model selection on the object of interest. Debiasing is typically achieved by adding a correction term to the plug-in estimator of the functional, which leads to properties such as semi-parametric efficiency, double robustness, and Neyman orthogonality. We implement an automatic debiasing procedure based on automatically learning the Riesz representation of the linear functional using Neural Nets and Random Forests. Our method only relies on black-box evaluation oracle access to the linear functional and does not require knowledge of its analytic form. We propose a multitasking Neural Net debiasing method with stochastic gradient descent minimization of a combined Riesz representer and regression loss, while sharing representation layers for the two functions. We also propose a Random Forest method which learns a locally linear representation of the Riesz function. Even though our method applies to arbitrary functionals, we experimentally find that it performs well compared to the state of art neural net based algorithm of Shi et al. (2019) for the case of the average treatment effect functional. We also evaluate our method on the problem of estimating average marginal effects with continuous treatments, using semi-synthetic data of gasoline price changes on gasoline demand. Code available at github.com/victor5as/RieszLearning. 
    more » « less
  5. Summary

    We provide adaptive inference methods, based on $\ell _1$ regularization, for regular (semiparametric) and nonregular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of nonregular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ‘double sparsity robustness’: either the approximation to the regression or the approximation to the representer can be ‘completely dense’ as long as the other is sufficiently ‘sparse’. Our main results are nonasymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.

     
    more » « less