skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling
ABSTRACT Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium .  more » « less
Award ID(s):
1657757 1260490
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied and Environmental Microbiology
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martiny, Jennifer B. (Ed.)
    ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands. 
    more » « less
  2. ABSTRACT Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N 2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N 2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems. IMPORTANCE Trichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We used Trichodesmium cultures adapted to high-CO 2 conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that “future ocean” conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses of Trichodesmium to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. 
    more » « less
  3. Summary

    In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)‐fixing cyanobacteriumTrichodesmiumcreate microscale nutrient‐rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology ofTrichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2fixation in cultures ofTrichodesmiumwithout impairing growth rate, suggesting thatTrichodesmiumcan use TMA as an alternate N source. In this study,15N‐TMA DNA stable isotope probing (SIP) of aTrichodesmiumenrichment was employed to further investigate TMA metabolism and determine whether TMA‐N is incorporated directly or secondarily via cross‐feeding facilitated by microbial associates. Herein, we identify two members of the marineRoseobacterclade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4+), which was subsequently used byTrichodesmiumand the rest of the community. The results implicate microbiome‐mediated carbon (C) and N transformations in modulating N2fixation and thus highlight the involvement of host‐associated heterotrophs in global biogeochemical cycling.

    more » « less
  4. Summary

    Nitrogen (N2)‐fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2‐fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2‐fixation rates ofHylocomium splendensandPleurozium schreberi.

    We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2‐fixation rates using stable isotopes (15N2) and measured environmental covariates.

    Mosses native to and transplanted into spruce stands supported generally higher N2‐fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2‐fixation rates forH. splendens, which had the highest rates. N2‐fixation was positively associated with several bacterial taxa, including cyanobacteria.

    The moss microbiome and environmental conditions controlled N2‐fixation at the stand and transplant scales. Predicted shifts from spruce‐ to deciduous‐dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2‐fixation rates, which could affect stand‐level N inputs.

    more » « less
  5. Abstract Background

    Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelpNereocystis luetkeanausing fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community.


    We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiontGranulosicoccussp. (Gammaproteobacteria) close to the kelp surface and filamentousBacteroidetesandAlphaproteobacteriarelatively more abundant near the biofilm-seawater interface. A community rich inBacteroidetescolonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population.


    Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (105–107cells/cm2), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems.

    more » « less