skip to main content


Title: Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the Quaternary
Abstract Aim

To test the importance of alternative diversification drivers and biogeographical processes for the evolution of Amazonian upland forest birds through a densely sampled analysis of diversification of the endemic Amazonian genusRhegmatorhinaat multiple taxonomic and temporal scales.

Location

Amazonia.

Taxon

Antbirds (Thamnophilidae).

Methods

We sequenced four mtDNAand nuclear gene regions of 120 individuals from 50 localities representing all recognized species and subspecies of the genus. We performed molecular phylogenetic analyses using both gene tree and species tree methods, molecular dating analysis and estimated population demographic history and gene flow.

Results

Dense sampling throughout the distribution ofRhegmatorhinarevealed that the main Amazonian rivers delimit the geographic distribution of taxa as inferred from mtDNAlineages. Molecular phylogenetic analyses resulted in a strongly supported phylogenetic hypothesis for the genus, with two main clades currently separated by the Madeira River. Molecular dating analysis indicated diversification during the Quaternary. Reconstruction of recent demographic history of populations revealed a trend for population expansion in eastern Amazonia and stability in the west. Estimates of gene flow corroborate the possibility that migration after divergence had some influence on the current patterns of diversity.

Main Conclusions

Based on broad‐scale sampling, a clarification of taxonomic boundaries, and strongly supported phylogenetic relationships, we confirm that, first, mitochondrial lineages within this upland forest Amazonian bird genus agree with spatial patterns known for decades based on phenotypes, and second, that most lineages are geographically delimited by the large Amazonian rivers. The association between past demographic changes related to palaeoclimatic cycles and the historically varying strength and size of rivers as barriers to dispersal may be the path to the answer to the long‐standing question of identifying the main drivers of Amazonian diversification.

 
more » « less
NSF-PAR ID:
10049786
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
45
Issue:
4
ISSN:
0305-0270
Page Range / eLocation ID:
p. 917-928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    To investigate the cryptic diversity and diversification timing in the putatively low‐dispersal Amazonian leaf‐litter lizardLoxopholis osvaldoi, and to ask how geography (rivers, isolation by distance, IBD), ecological drivers (isolation by environment, IBE) and historical factors (climatic refugia) explain intraspecific genetic variation.

    Location

    Central Amazonia, Brazil.

    Taxon

    Squamata; Gymnophthalmidae;Loxopholis osvaldoi.

    Methods

    We sequenced two mitochondrial and two nuclear markers in 157 individuals. Phylogeographic structure and the occurrence of independent evolving lineages where explored through phylogenetic and coalescent analyses. A species tree and divergence dates of lineages were inferred with *BEAST, employing multiple DNA substitution rates. The potential genetic impacts of geographical distance among localities, the environment and the position of localities in relation to main rivers were tested by redundancy analysis (RDA).

    Results

    We detected 11 independently evolving and largely divergent intraspecific lineages. Lineage distribution patterns are complex and do not match any conspicuous barrier to gene flow, except for the Amazon River. Most lineages appear to have originated in the lower Miocene and Pliocene, in disagreement with the Pleistocene refuge hypothesis. IBD, IBE and rivers appear to have acted in concert establishing and maintaining genetic structure. However, when controlling for other explanatory variables, IBD explains significantly more variation than rivers, IBE or historical factors.

    Main Conclusions

    Our results strongly suggest thatL.osvaldoiis a species complex. Future taxonomic work should use an integrative approach to explore whether morphological variation is present and congruent with the genetic data. While the use of a sensitive dating analysis allowed us to better describe the diversification history ofL.osvaldoi, the lack of a spatial model of Neogene river dynamics prevents the test of specific, more informative river barrier hypotheses. The data suggest that nonlinear correlation analyses (e.g. RDA) should be preferred to detect factors that affect phylogeographic patterns in the Amazon, instead of linear multiple regressions (e.g. Mantel tests). Given the high level of cryptic diversity detected within this and other Amazonian species, we caution against hypothesis tests based solely on the distribution of nominal taxa, which can provide a rather incomplete view of the processes behind Amazonian diversity.

     
    more » « less
  2. Abstract

    Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genusGopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNAand four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree.RNA‐seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best‐fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).

     
    more » « less
  3. Abstract

    The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.

     
    more » « less
  4. Premise of the Study

    This investigation establishes the firstDNA‐sequence‐based phylogenetic hypothesis of species relationships in the coca family (Erythroxylaceae) and presents its implications for the intrageneric taxonomy and neotropical biogeography ofErythroxylum. We also identify the closest wild relatives and evolutionary relationships of the cultivated coca taxa.

    Methods

    We focused our phylogenomic inference on the largest taxonomic section in the genusErythroxylum(ArcherythroxylumO.E.Schulz) using concatenation and gene tree reconciliation methods from hybridization‐based target capture of 427 genes.

    Key Results

    We show that neotropicalErythroxylumare monophyletic within the paleotropical lineages, yetArcherythroxylumand all of the other taxonomic sections from which we sampled multiple species lack monophyly. We mapped phytogeographic states onto the tree and found some concordance between these regions and clades. The wild speciesE. gracilipesandE. cataractarumare most closely related to the cultivatedE. cocaandE. novogranatense, but relationships within this “coca” clade remain equivocal.

    Conclusions

    Our results point to the difficulty of morphology‐based intrageneric classification in this clade and highlight the importance of integrative taxonomy in future systematic revisions. We can confidently identifyE. gracilipesandE. cataractarumas the closest wild relatives of the coca taxa, but understanding the domestication history of this crop will require more thorough phylogeographic analysis.

     
    more » « less
  5. Abstract Aim

    Among the main biogeographical hypotheses explaining the remarkable diversity of fishes in the Neotropics is the “palaeogeographical hypothesis”, focusing on vicariance, and the “hydrogeological hypothesis”, focusing on geodispersal. Yet while reflecting different processes, they may result in similar biogeographical patterns. We employed a model‐based Bayesian approach to test these alternative hypotheses and determine which shaped the phylogeographical patterns observed in a group of Neotropical fishes.

    Location

    South America.

    Taxon

    Salminus.

    Methods

    We used mitochondrial and nuclear markers to infer phylogenetic relationships and estimate divergence times amongSalminusspecies, associating the results with known geological events. We then employed approximate Bayesian computation (ABC) to explore changes in population size over time, asking whether vicariance or geodispersal events best explain the phylogeographical signature observed in the data. Because geodispersal captures a few individuals from a parental population, which can then expand and lead to a new lineage, we expect to find genetic signatures of a founder event following population expansion under this scenario, but not under vicariance.

    Results

    The analyses suggest that the diversification process inSalminusbegan in Upper Miocene, andABCindicates that it involved both vicariance and geodispersal events: while a vicariance event better explains the phylogeographical structure withinS. brasiliensisand the genetic patterns of differentiation betweenS. sp. Amazon andS. sp. Araguaia, geodispersal appears to have been the most important event structuring lineages ofSalminus hilarii.

    Main Conclusions

    Both vicariance and geodispersal signatures were detected in our biological model, inferring a complex yet realistic demographic history ofSalminuslineages. The correspondence between theABCresults and traditional phylogeographical interpretations provide further confidence in the models drawn and tested. This study reinforces the value of applying anABCframework in phylogeographical studies, particularly for those interested in testing alternative and biologically plausible processes underlying similar biogeographical patterns.

     
    more » « less