skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading
Abstract It remains unclear how flagella generate propulsive, oscillatory waveforms. While it is well known that dynein motors, in combination with passive cytoskeletal elements, drive the bending of the axoneme by applying shearing forces and bending moments to microtubule doublets, the origin of rhythmicity is still mysterious. Most conceptual models of flagellar oscillation involve dynein regulation or switching, so that dynein activity first on one side of the axoneme, then the other, drives bending. In contrast, a “viscoelastic flutter” mechanism has recently been proposed, based on a dynamic structural instability. Simple mathematical models of coupled elastic beams in viscous fluid, subjected to steady, axially distributed, dynein forces of sufficient magnitude, can exhibit oscillatory motion without any switching or dynamic regulation. Here we introduce more realistic finite element (FE) models of 6‐doublet and 9‐doublet flagella, with radial spokes and interdoublet links that slide along the central pair or corresponding doublet. These models demonstrate the viscoelastic flutter mechanism. Above a critical force threshold, these models exhibit an abrupt onset of propulsive, wavelike oscillations typical of flutter instability. Changes in the magnitude and spatial distribution of steady dynein force, or to viscous resistance, lead to behavior qualitatively consistent with experimental observations. This study demonstrates the ability of FE models to simulate nonlinear interactions between axonemal components during flagellar beating, and supports the plausibility of viscoelastic flutter as a mechanism of flagellar oscillation.  more » « less
Award ID(s):
1633971
PAR ID:
10049805
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Cytoskeleton
Volume:
75
Issue:
5
ISSN:
1949-3584
Format(s):
Medium: X Size: p. 185-200
Size(s):
p. 185-200
Sponsoring Org:
National Science Foundation
More Like this
  1. The structure of the axoneme in motile cilia and flagella is emerging with increasing detail from high-resolution imaging, but the mechanism by which the axoneme creates oscillatory, propulsive motion remains mysterious. It has recently been proposed that this motion may be caused by a dynamic ‘flutter’ instability that can occur under steady dynein loading, and not by switching or modulation of dynein motor activity (as commonly assumed). In the current work, we have built an improved multi-filament mathematical model of the axoneme and implemented it as a system of discrete equations using the finite-element method. The eigenvalues and eigenvectors of this model predict the emergence of oscillatory, wave-like solutions in the absence of dynein regulation and specify the associated frequencies and waveforms of beating. Time-domain simulations with this model illustrate the behaviour predicted by the system's eigenvalues. This model and analysis allow us to efficiently explore the potential effects of difficult to measure biophysical parameters, such as elasticity of radial spokes and inter-doublet links, on the ciliary waveform. These results support the idea that dynamic instability without dynamic dynein regulation is a plausible and robust mechanism for generating ciliary beating. 
    more » « less
  2. Marshall, Wallace (Ed.)
    Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating. 
    more » « less
  3. Flagella and cilia are common features of a wide variety of biological cells and play important roles in locomotion and feeding at the microscale. The beating of flagella is controlled by molecular motors that exert forces along the length of the flagellum and are regulated by a feedback mechanism coupled to the flagella deformation. We develop a three-dimensional (3D) flagellum beating model based on sliding-controlled motor feedback, accounting for both bending and twist, as well as differential bending resistances along and orthogonal to the major bending plane of the flagellum. We show that beating is generated and sustained spontaneously for a sufficiently high motor activity through an instability mechanism. Isotropic bending rigidities in the flagellum lead to 3D helical beating patterns. By contrast, anisotropic flagella present a rich variety of wave-like beating dynamics, including both 3D beating patterns as well as planar beating patterns. We show that the ability to generate nearly planar beating despite the 3D beating machinery requires only a modest degree of bending anisotropy, and is a feature observed in many eukaryotic flagella such as mammalian spermatozoa. 
    more » « less
  4. Beating flagella exhibit a variety of synchronization modes. This synchrony has long been attributed to hydrodynamic coupling between the flagella. However, recent work with flagellated algae indicates that a mechanism internal to the cell, through the contractile fibres connecting the flagella basal bodies, must be at play to actively modulate flagellar synchrony. Exactly how basal coupling mediates flagellar coordination remains unclear. Here, we examine the role of basal coupling in the synchronization of the model biflagellate Chlamydomonas reinhardtii using a series of mathematical models of decreasing levels of complexity. We report that basal coupling is sufficient to achieve inphase, antiphase and bistable synchrony, even in the absence of hydrodynamic coupling and flagellar compliance. These modes can be reached by modulating the activity level of the individual flagella or the strength of the basal coupling. We observe a slip mode when allowing for differential flagellar activity, just as in experiments with live cells. We introduce a dimensionless ratio of flagellar activity to basal coupling that is predictive of the mode of synchrony. This ratio allows us to query biological parameters which are not yet directly measurable experimentally. Our work shows a concrete route for cells to actively control the synchronization of their flagella. 
    more » « less
  5. This paper investigates the energy production of a “meso-scale”, wind-based energy harvester that exploits the torsional aeroelastic instability of a rigid blade-airfoil, elastically supported at equidistant supports. Torsional flutter is a single mode aeroelastic instability phenomenon, in which a diverging dynamic angular rotation of a body occurs. The apparatus relies on a simple mechanism that uses flow-induced pitch motion to extract and convert airflow kinetic energy to electrical energy. The system is composed by a rigid blade-airfoil, connected to a support structure through a non-linear restoring force (torsional spring-like) mechanism that enables the rotation about a reference pivot axis. The proposed technology is designed to be efficient in the range of low and medium wind speeds (10-13 m/s), in which horizontal-axis wind turbines and other harvesters are not efficient. Deterministic pre-flutter, incipient flutter and post-critical vibrations of the apparatus have been already explored in a previous study. This work aims to further investigate the aeroelastic behavior of the “flapping foil” by examining the effect of turbulence, random experimental error and modeling simplifications of the aeroelastic forces. The analysis is conducted at incipient flutter in the frequency domain using classical unsteady force models. Monte Carlo methods are employed to solve for the probability of incipient flutter speed. Several configurations are considered to improve the efficiency of the energy harvester. 
    more » « less