skip to main content


Title: Bioorthogonal Strategies for Engineering Extracellular Matrices
Abstract

Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM‐mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of crossreactivity. The field of bioorthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bioorthogonal crosslinking strategies are incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bioorthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. This review provides an overview of bioorthogonal strategies used to prepare cell‐encapsulating hydrogels and highlights the potential applications of bioorthogonal chemistries in the design of dynamic engineered ECMs.

 
more » « less
NSF-PAR ID:
10049864
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
11
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Toward the goal of establishing an engineered model of the vocal fold lamina propria (LP), mesenchymal stem cells (MSCs) are encapsulated in hyaluronic acid (HA)‐based hydrogels employing tetrazine ligation with strained alkenes. To mimic matrix stiffening during LP maturation, diffusion‐controlled interfacial bioorthogonal crosslinking is carried out on the soft cellular construct using HA modified with a ferocious dienophile,trans‐cyclooctene (TCO). Cultures are maintained in MSC growth media for 14 days to afford a model of a newborn LP that is homogeneously soft (nLP), a homogeneously stiffened construct zero (sLP0) or 7 days (sLP7) post cell encapsulation, and a mature LP model (mLP) with a stiff top layer and a soft bottom layer. Installation of additional HA crosslinks restricts cell spreading. Compared to the nLP controls, sLP7 conditions upregulate the expression of fibrous matrix proteins (Col I, DCN, andFN EDA), classic fibroblastic markers (TNC, FAP, andFSP1), and matrix remodeling enzymes (MMP2, TIMP1, andHAS3). Day 7 stiffening also upregulates the catabolic activities, enhances ECM turnover, and promotesYAPexpression. Overall, in situ delayed matrix stiffening promotes a fibroblast transition from MSCs and enhances YAP‐regulated mechanosensing.

     
    more » « less
  2. Abstract

    Xeno‐free, chemically defined poly(ethylene glycol) (PEG)‐based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene‐click chemistries are integrated to form synthetic, dynamically tunable PEG–peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol–norbornene hydrogels crosslinked by multiarm PEG–norbornene (PEG–NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine–norbornene (Tz–NB) click reaction is then employed to dynamically stiffen the cell‐laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono‐functionalized PEG‐Tz, PEG‐mTz, and dualfunctionalized PEG‐Tz/mTz that react with PEG–NB to form additional crosslinks in the cell‐laden hydrogels. The versatility of Tz‐NB stiffening is demonstrated with different Tz‐modified macromers or by intermittent incubation of PEG‐Tz for temporal stiffening. Finally, the Tz–NB‐mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno‐free and dynamic stem cell niche.

     
    more » « less
  3. Abstract

    Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.

     
    more » « less
  4. Abstract

    Physical properties of the extracellular matrix (ECM) affect cell behaviors ranging from cell adhesion and migration to differentiation and gene expression, a process known as mechanotransduction. While most studies have focused on the impact of ECM stiffness, using linearly elastic materials such as polyacrylamide gels as cell culture substrates, biological tissues and ECMs are viscoelastic, which means they exhibit time‐dependent mechanical responses and dissipate mechanical energy. Recent studies have revealed ECM viscoelasticity, independent of stiffness, as a critical physical parameter regulating cellular processes. These studies have used biomaterials with tunable viscoelasticity as cell‐culture substrates, with alginate hydrogels being one of the most commonly used systems. Here, we detail the protocols for three approaches to modulating viscoelasticity in alginate hydrogels for 2D and 3D cell culture studies, as well as the testing of their mechanical properties. Viscoelasticity in alginate hydrogels can be tuned by varying the molecular weight of the alginate polymer, changing the type of crosslinker—ionic versus covalent—or by grafting short poly(ethylene‐glycol) (PEG) chains to the alginate polymer. As these approaches are based on commercially available products and simple chemistries, these protocols should be accessible for scientists in the cell biology and bioengineering communities. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Tuning viscoelasticity by varying alginate molecular weight

    Basic Protocol 2: Tuning viscoelasticity with ionic versus covalent crosslinking

    Basic Protocol 3: Tuning viscoelasticity by adding PEG spacers to alginate chains

    Support Protocol 1: Testing mechanical properties of alginate hydrogels

    Support Protocol 2: Conjugating cell‐adhesion peptide RGD to alginate

     
    more » « less
  5. Engineered three-dimensional (3D) cell culture models can accelerate drug discovery, and lead to new fundamental insights in cell–cell, cell–extracellular matrix (ECM), and cell–biomolecule interactions. Existing hydrogel or scaffold-based approaches for generating 3D tumor models do not possess significant tunability and possess limited scalability for high throughput drug screening. We have developed a new library of hydrogels, called Amikagels, which are derived from the crosslinking of amikacin hydrate (AH) and poly(ethylene glycol) diglycidyl ether (PEGDE). Here we describe the use of Amikagels for generating 3D tumor microenvironments (3DTMs) of breast cancer cells. Biological characteristics of these breast cancer 3DTMs, such as drug resistance and hypoxia were evaluated and compared to those of two-dimensional (2D) monolayer cultures. Estrogen receptor (ER) positive breast cancer 3DTMs formed on Amikagels were more dormant compared to their respective 2D monolayer cultures. Relative to their respective 2D cultures, breast cancer 3DTMs were resistant to cell death induced by mitoxantrone and doxorubicin, which are commonly used chemotherapeutic drugs in cancer, including breast cancer. The drug resistance seen in 3DTMs was correlated with hypoxia seen in these cultures but not in 2D monolayer cultures. Inhibition of Mucin 1 (MUC1), which is overexpressed in response to hypoxia, resulted in nearly complete cell death of 2D monolayer and 3DTMs of breast cancer. Combination of an ER stress inducer and MUC1 inhibition further enhanced cell death in 2D monolayer and 3DTMs. Taken together, this study shows that the Amikagel platform represents a novel technology for the generation of physiologically relevant 3DTMs in vitro and can serve as a platform to discover novel treatments for drug-resistant breast cancer.

     
    more » « less