skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phosphorus Enhances Uptake of Dissolved Organic Matter in Boreal Streams
Retention of carbon (C), either by physical mechanisms or microbial uptake, is a key driver of the transformation and storage of C and nutrients within ecosystems. Both the molecular composition and nutrient content of organic matter influence the rate at which it is retained in streams, but the relative influence of these characteristics remains unclear. We estimated the effects of nutrient content and molecular composition of dissolved organic C (DOC) on uptake in boreal streams by measuring rates of C retention, in situ, following introduction of leachates derived from alder, poplar, and spruce trees subject to long-term fertilization with nitrogen (N) or phosphorus (P). Leachate C:N varied approximately twofold, and C:P varied nearly 20-fold across species and nutrient treatments. Uptake of DOC was greatest for leachates derived from trees that had been fertilized with P, a finding consistent with P-limitation of uptake and/or preferential sorption of P-containing molecules. Optical measures indicated that leachates derived from the three tree species varied in molecular composition, but uptake of DOC did not differ across species, suggesting weak constraints on retention imposed by molecular composition relative to nutrient limitation. Observed coupling between P and C cycles highlights the potential for increased P availability to enhance DOC retention in headwater streams.  more » « less
Award ID(s):
1636476
PAR ID:
10050014
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ecosystems
ISSN:
1432-9840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes. 
    more » « less
  2. Abstract The biogeochemistry of rapidly retreating Andean glaciers is poorly understood, and Ecuadorian glacier dissolved organic matter (DOM) composition is unknown. This study examined molecular composition and carbon isotopes of DOM from supraglacial and outflow streams (n = 5 and 14, respectively) across five ice capped volcanoes in Ecuador. Compositional metrics were paired with streamwater isotope analyses (δ18O) to assess if outflow DOM composition was associated with regional precipitation gradients and thus an atmospheric origin of glacier DOM. Ecuadorian glacier outflows exported ancient, biolabile dissolved organic carbon (DOC), and DOM contained a high relative abundance (RA) of aliphatic and peptide‐like compounds (≥27%RA). Outflows were consistently more depleted in Δ14C‐DOC (i.e., older) compared to supraglacial streams (mean −195.2 and −61.3‰ respectively), perhaps due to integration of spatially heterogenous and variably aged DOM pools across the supraglacial environment, or incorporation of aged subglacial OM as runoff was routed to the outflow. Across Ecuador, Δ14C‐DOC enrichment was associated with decreased aromaticity of DOM, due to increased contributions of organic matter (OM) from microbial processes or atmospheric deposition of recently fixed and subsequently degraded OM (e.g., biomass burning byproducts). There was a regional gradient between glacier outflow DOM composition and streamwater δ18O, suggesting covariation between regional precipitation gradients and the DOM exported from glacier outflows. Ultimately, this highlights that atmospheric deposition may exert a control on glacier outflow DOM composition, suggesting regional air circulation patterns and precipitation sources in part determine the origins and quality of OM exported from glacier environments. 
    more » « less
  3. Abstract Wetland and permafrost soils contain some of Earth's largest reservoirs of organic carbon, and these stores are threatened by rapid warming across the Arctic. Nearly half of northern wetlands are affected by permafrost. As these ecosystems warm, the cycling of dissolved organic matter (DOM) and the opportunities for microbial degradation are changing. This is particularly evident as the relationship between wetland and permafrost DOM dynamics evolves, especially with the introduction of permafrost‐derived DOM into wetland environments. Thus, understanding the interplay of DOM composition and microbial communities from wetlands and permafrost is critical to predicting the impact of released carbon on global carbon cycling. As little is understood about the interactions between wetland active layer and permafrost‐derived sources as they intermingle, we conducted experimental bioincubations of mixtures of DOM and microbial communities from two fen wetland depths (shallow: 0–15 cm, and deep: 15–30 cm) and two ages of permafrost soil (Holocene and Pleistocene). We found that the source of microbial inoculum was not a significant driver of dissolved organic carbon (DOC) degradation across treatments; rather, DOM source and specifically, DOM molecular composition, controlled the rate of DOC loss over 100 days of bioincubations. DOC loss across all treatments was negatively correlated with modified aromaticity index, O/C, and the relative abundance of condensed aromatic and polyphenolic formula, and positively correlated with H/C and the relative abundance of aliphatic and peptide‐like formula. Pleistocene permafrost‐derived DOC exhibited ∼70% loss during the bioincubation driven by its initial molecular‐level composition, highlighting its high bioavailability irrespective of microbial source. 
    more » « less
  4. Abstract Tidal wetlands are a significant source of dissolved organic matter (DOM) to coastal ecosystems, which impacts nutrient cycling, light exposure, carbon dynamics, phytoplankton activity, microbial growth, and ecosystem productivity. There is a wide variety of research on the properties and sources of DOM; however, little is known about the characteristics and degradation of DOM specifically sourced from tidal wetland plants. By conducting microbial and combined UV exposure and microbial incubation experiments of leachates from fresh and senescent plants in Chesapeake Bay wetlands, it was demonstrated that senescent material leached more dissolved organic carbon (DOC) than fresh material (77.9 ± 54.3 vs 21.6 ± 11.8 mg DOC L−1, respectively). Degradation followed an exponential decay pattern, and the senescent material averaged 50.5 ± 9.45% biodegradable DOC (%BDOC), or the loss of DOC due to microbial degradation. In comparison, the fresh material averaged a greater %BDOC (72.6 ± 19.2%). Percent remaining of absorbance (83.3 ± 26.7% for fresh, 90.1 ± 10.8% for senescent) was greater than percent remaining DOC, indicating that colored DOM is less bioavailable than non-colored material. Concentrations of DOC leached, %BDOC, and SUVA280 varied between species, indicating that the species composition of the marsh likely impacts the quantity and quality of exported DOC. Comparing the UV + microbial to the microbial only incubations did not reveal any clear effects on %BDOC but UV exposure enhanced loss of absorbance during subsequent dark incubation. These results demonstrate the impacts of senescence on the quality and concentration of DOM leached from tidal wetland plants, and that microbes combined with UV impact the degradation of this DOM differently from microbes alone. 
    more » « less
  5. ABSTRACT To better understand linkages between hydrology and ecosystem carbon flux in northern aquatic ecosystems, we evaluated the relationship between plant communities, biofilm development, and carbon dioxide (CO2) exchange following long‐term changes in hydrology in an Alaskan fen. We quantified seasonal variation in biofilm composition and CO2exchange in response to lowered and raised water table position (relative to a control) during years with varying levels of background dissolved organic carbon (DOC). We then used nutrient‐diffusing substrates (NDS) to evaluate cause–effect relationships between changes in plant subsidies (i.e., leachates) and biofilm composition among water table treatments. We found that background DOC concentration determined whether plant subsidies promoted net autotrophy or heterotrophy on NDS. In conditions where background DOC was ≤ 40 mg L−1, plant subsidies promoted an autotrophic biofilm. Conversely, when background DOC concentration was ≥ 50 mg L−1, plant subsidies promoted heterotrophy. Greater light attenuation associated with elevated levels of DOC may have overwhelmed the stimulatory effect of nutrients on autotrophic microbes by constraining photosynthesis while simultaneously allowing heterotrophs to outcompete autotrophs for available nutrients. At the ecosystem level, conditions that favored an autotrophic biofilm resulted in net CO2uptake among all water table treatments, whereas the site was a net source of CO2to the atmosphere in conditions that supported greater heterotrophy. Taken together, these findings show that hydrologic history interacts with changes in dominant plant functional groups to alter biofilm composition, which has consequences for ecosystem CO2exchange. 
    more » « less