Higher education and research science is being conducted in an era of information abundance. Sharing educational resources (e.g. Libraries, Curriculums, Online courses) and science resources, such as data commons, instrumentation, technology, and best practices, across national borders, can promote expanded global education goals and scientific inquiry and has the potential to advance discovery. Providing robust diverse Research and Education Networks (RENs) linking the U.S., Brazil (S. America) and African researcher and education communities is an increasingly strategic priority. Africa has developed research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of these three continents via an S. Atlantic route to complement the existing North Atlantic routes via Europe. This paper will discuss the availability of new submarine cable spectrum for RENs via SACS between Luanda, Angola and Fortaleza, Brazil and the Monet cable between Fortaleza and Florida in the U.S. for use by research and education communities. This new infrastructure creates an unprecedented opportunity for the stakeholders to coordinate planning efforts to strategically make use of the offered spectrum towards serving the broadest communities of interest in research and education. The new links will be a foundational layer for the employment of R&E networks outfitted with leading-edge technologies (e.g. Science DMZ, SDN, SDX, cybersecurity etc.). The paper seeks to leverage a discussion of opportunities for a new R&E Exchange point at Luanda, Angola, other connectivity options, and to further promote discussion and identify synergies with UbuntuNet members. Florida International University and AmLight consortium partners are planning, designing, and defining a strategy for high capacity connectivity research and education network connectivity between the US and Southwest Africa, called Americas Africa Research and eduCation Lightpaths (AARCLight). Furthermore, the other “end” of the SACS cable is being connected to an Open Fortaleza R&E Exchange point in Brazil. The new academic exchange point, South Atlantic Crossroads (SAX), is managed by Rede Nacional de Ensino e Pesquisa (RNP), where AmLight connects and continues on the Monet spectrum to Boca Raton Miami Florida. Having the transport service opened in Fortaleza will allow RENs from South America to collaborate with partners in Africa with significantly less delay, (at least 150ms lower) than using the current paths available. Interactive high-resolution video and big data applications will benefit from the establishment of the SAX international exchange point in Fortaleza.
more »
« less
Responding to the demands of big data scientific instruments through the development of an international software defined exchange point (SDX)
Science is being conducted in an era of information abundance. The rate at which science data is generated is increasing, both in volume and variety. This phenomenon is transforming how science is thought of and practiced. This transformation is being shaped by new scientific instruments that are being designed and deployed that will dramatically increase the need for large, real-time data transfers among scientists throughout the world. One such instrument is the Square Kilometer Array (SKA) being built in South Africa that will transmit approximately 160Gbps of data from each radio dish to a central processor. This paper describes a collaborative effort to respond to the demands of big data scientific instruments through the development of an international software defined exchange point (SDX) that will meet the network provisioning needs for science applications. This paper discusses the challenges of end-to-end path provisioning across multiple research and education networks using OpenFlow/SDN technologies. Furthermore, it refers to the AtlanticWave-SDX, a project at Florida International University and the Georgia Institute of Technology, funded by the US National Science Foundation (NSF), along with support from Brazil’s NREN, Rede Nacional de Ensino e Pesquisa (RNP, and the Academic Network of Sao Paulo (ANSP). Future work explores the feasibility of establishing an SDX in West Africa, in collaboration with regional African RENs, based on the planned availability of submarine cable spectrum for use by research and education communities.
more »
« less
- Award ID(s):
- 1638990
- PAR ID:
- 10050473
- Date Published:
- Journal Name:
- UbuntuNet Connect-Connect 2016
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Higher education and research science is being conducted in an era of information abundance. Sharing educational resources (e.g. Libraries, Curriculums, Online courses) and science resources, such as data commons, instrumentation, technology, and best practices, across national borders, can promote expanded global education goals and scientific inquiry and has the potential to advance discovery. Providing robust diverse Research and Education Networks (RENs) linking the U.S., Brazil (S. America) and African researcher and education communities is an increasingly strategic priority. Africa has developed research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of these three continents via a S. Atlantic route to complement the existing North Atlantic routes via Europe. This paper will discuss the availability of new submarine cable spectrum for RENs via SACS between Luanda, Angola and Fortaleza, Brazil and the Monet cable between Fortaleza and Florida in the U.S. for use by research and education communities. This new infrastructure creates an unprecedented opportunity for the stakeholders to coordinate planning efforts to strategically make use of the offered spectrum towards serving the broadest communities of interest in research and education. The new links will be a foundational layer for the employment of R&E networks outfitted with leading edge technologies (e.g. Science DMZ, SDN, SDX, cybersecurity etc.). The paper seeks to leverage a discussion of opportunities for a new R&E Exchange point at Luanda, Angola, other connectivity options, and to further promote discussion and identify synergies with UbuntuNet members. Florida International University and AmLight consortium partners are planning, designing, and defining a strategy for high capacity connectivity research and education network connectivity between the US and Southwest Africa, called Americas Africa Research and eduCation Lightpaths (AARCLight). Furthermore, the other “end” of the SACS cable is being connected to an Open Fortaleza R&E Exchange point in Brazil. The new academic exchange point, South Atlantic Crossroads (SAX), is managed by Rede Nacional de Ensino e Pesquisa (RNP), where AmLight connects and continues on the Monet spectrum to Boca Raton Miami Florida. Having the transport service opened in Fortaleza will allow RENs from South America to collaborate with partners in Africa with significantly less delay, (at least 150ms lower) than using the current paths available. Interactive high-resolution video and big data applications will benefit from the establishment of the SAX international exchange point in Fortaleza.more » « less
-
To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs.more » « less
-
Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs.more » « less
-
To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated circuits between research facilities for transferring large amounts of data, by using advanced reservation systems. Intercontinental dedicated circuits typically require coordination between multiple administrative domains, which need to reach an agreement on a suitable advance reservation. The success rate of finding an advance reservation decreases as the number of participant domains increases for traditional systems because the circuit is composed over a single path. To improve provisioning of multi-domain advance reservations, we propose an architecture for end-to-end service orchestration in multi-domain science networks that leverages software-defined exchanges (SDX) for providing multi-path, multi-domain advance reservations. We have implemented an orchestrator for multi-path, multi-domain advance reservations and an SDX to support these services. Our orchestration architecture enables multi-path, multi-domain advance reservations and improves the reservation success rate from 50% in single path systems to 99% when four path are available.more » « less
An official website of the United States government

