To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs.
more »
« less
Facilitating content distribution in Sub-Saharan Africa through Software-Defined Exchange points
Sub-Saharan Africa is the fastest growing region of international Internet capacity in the world. Content in Sub-Saharan Africa is increasing: Microsoft is bringing two new data centers to South Africa, and Google and Akamai have been installing caches. The demand for content distribution within Sub-Saharan Africa is growing as the number of data centers and caches increase. Strategic placement of local compute, storage and networking is increasingly important in response to demands in local content distribution growth. Internet eXchange Points (IXPs) are resources that play a central role in interconnecting many networks. In addition, their role has been expanding in importance for bringing content closer to end users. For example, as content traffic continues to rise, IXPs are in the foreground of the peering issues between content providers and access networks. IXPs are considered a natural resource to evolve into a SDX, because they offer a physical location where multiple networks meet to exchange traffic and to peer (exchange routes). This paper presents a Software-Defined Exchange as a novel internetworking paradigm to facilitate content distribution. A SDX facilitates sharing of compute, storage and networking resources among multiple independent administrative domains, such as ISPs, CDNs, or NRENs. A survey of the most relevant SDX studies and use cases for a SDX, including content distribution, will be presented. Finally, deployment considerations and projects implementing SDXs will be discussed.
more »
« less
- Award ID(s):
- 1638990
- PAR ID:
- 10050481
- Date Published:
- Journal Name:
- UbuntuNet Connect 2017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs.more » « less
-
Internet of drones (IoD), employing drones as the internet of things (IoT) devices, brings flexibility to IoT networks and has been used to provision several applications (e.g., object tracking and traffic surveillance). The explosive growth of users and IoD applications injects massive traffic into IoD networks, hence causing congestions and reducing the quality of service (QoS). In order to improve the QoS, caching at IoD gateways is a promising solution which stores popular IoD data and sends them directly to the users instead of activating drones to transmit the data; this reduces the traffic in IoD networks. In order to fully utilize the storage-limited caches, appropriate content placement decisions should be made to determine which data should be cached. On the other hand, appropriate drone association strategies, which determine the serving IoD gateway for each drone, help distribute the network traffic properly and hence improve the QoS. In our work, we consider a joint optimization of drone association and content placement problem aimed at maximizing the average data transfer rate. This problem is formulated as an integer linear programming (ILP) problem. We then design the Drone Association and Content Placement (DACP) algorithm to solve this problem with low computational complexity. Extensive simulations demonstrate the performance of DACP.more » « less
-
Content delivery networks (CDNs) distribute much of today's Internet traffic by caching and serving users' contents requested. A major goal of a CDN is to improve hit probabilities of its caches, thereby reducing WAN traffic and user-perceived latency. In this paper, we develop a new approach for caching in CDNs that learns from optimal caching for decision making. To attain this goal, we first propose HRO to compute the upper bound on optimal caching in an online manner, and then leverage HRO to inform future content admission and eviction. We call this new cache design LHR. We show that LHR is efficient since it includes a detection mechanism for model update, an auto-tuned threshold-based model for content admission with a simple eviction rule. We have implemented an LHR simulator as well as a prototype within an Apache Traffic Server and the Caffeine, respectively. Our experimental results using four production CDN traces show that LHR consistently outperforms state of the arts with an increase in hit probability of up to 9% and a reduction in WAN traffic of up to 15% compared to a typical production CDN cache. Our evaluation of the LHR prototype shows that it only imposes a moderate overhead and can be deployed on today's CDN servers.more » « less
-
Internet traffic load is not uniformly distributed through the day; it is significantly higher during peak-periods, and comparatively idle during off-peak periods. In this context, we present CacheFlix, a time-shifted edge-caching solution that prefetches Netflix content during off-peak periods of network connectivity. We specifically focus on Netflix since it contributes to the largest percentage of global Internet traffic by a single application. We analyze a real-world dataset of Netflix viewing activity that we collected from 1060 users spanning a 1-year period and comprised of over 2.2 million Netflix TV shows and documentary series; we restrict the scope of our study to Netflix series that account for 65% of a typical user's Netflix load in terms of bytes fetched. We present insights on users' viewing behavior, and develop an accurate and efficient prediction algorithm using LSTM networks that caches episodes of Netflix series on storage constrained edge nodes, based on the user's past viewing activity. We evaluate CacheFlix on the collected dataset over various cache eviction policies, and find that CacheFlix is able to shift 70% of Netflix series traffic to off-peak hours.more » « less
An official website of the United States government

