skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capillary induced twisting of Janus cylinders
At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque.  more » « less
Award ID(s):
1351466
PAR ID:
10050875
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
13
Issue:
41
ISSN:
1744-683X
Page Range / eLocation ID:
7556 to 7561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although the utilization of rigid particles can afford stable emulsions, some applications require eventual emulsion destabilization to release contents captured in the particle-covered droplet. This destabilizing effect is achieved when using stabilizers that respond to controlled changes in environment. Microgels can be synthesized as stimuli responsive polymeric gel networks that adsorb to oil/water interfaces and stabilize emulsions. These particles are commonly hydrogels that swell and collapse in water in response to environmental changes. However, amphiphilic functionality is desired to enhance the adsorption abilities of these hydrogels while maintaining their stimuli responsivity. Microfluidic techniques are used to synthesize Janus microgels with two opposing stimuli responsive hemispheres. The particles have a temperature responsive domain connected to a pH responsive network where each side changes its hydrophilicity in response to a change in temperature or pH, respectively. The Janus microgels are amphiphilic in acidic conditions at 19 °C and alkaline conditions at 40 °C, while the opposite conditions cause a reduction of the amphiphilicity. By stabilizing emulsions with these dual responsive microgels, “smart” droplets that respond to environmental cues are formed. Emulsion droplets remain stable with smaller diameters when aqueous solution conditions favor amphiphilic particles yet, coalesce to larger droplets upon changing pH or temperature. These responsive Janus microgels represent the advancing technology of responsive droplets and demonstrate the applicability of microgels as emulsion stabilizers. 
    more » « less
  2. Abstract Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles which exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. Here, magnetically steerable active colloids at liquid–air interfaces that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium is presented. The bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface is investigated and compared to more traditional Janus colloids with a hemispherical coating. The patchy colloids tend to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. This is demonstrated by manipulating and assembling patterns of passive spheres on a substrate as well as at an air–liquid interface. The propulsion and bubble formation of both the Janus and patchy colloids is characterized and it is found that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis towards the droplet edges which is attributed to a torque resulting from opposing downward and buoyant forces on the colloids. 
    more » « less
  3. null (Ed.)
    Building upon our previous studies on interactions of amphiphilic Janus nanoparticles with glass-supported lipid bilayers, we study here how these Janus nanoparticles perturb the structural integrity and induce shape instabilities of membranes of giant unilamellar vesicles (GUVs). We show that 100 nm amphiphilic Janus nanoparticles disrupt GUV membranes at a threshold particle concentration similar to that in supported lipid bilayers, but cause drastically different membrane deformations, including membrane wrinkling, protrusion, poration, and even collapse of entire vesicles. By combining experiments with molecular simulations, we reveal how Janus nanoparticles alter local membrane curvature and collectively compress the membrane to induce shape transformation of vesicles. Our study demonstrates that amphiphilic Janus nanoparticles disrupt vesicle membranes differently and more effectively than uniform amphiphilic particles. 
    more » « less
  4. Abstract Studying the behavior of anisotropic particles at fluid interfaces is a rapidly expanding field, as understanding how the introduced anisotropy affects the resulting properties is essential in the engineering of interfacial systems. Surface anisotropic particles, also known as Janus particles (JPs), offer new possibilities for novel applications due to their amphiphilicity and stronger binding to fluid interfaces compared to homogeneous particles. Introducing surface anisotropy creates complexity as the orientation of interfacially bound particles affects interparticle interactions, a contributing factor to the microstructure formation. In this work, we have investigated the microstructure of JP monolayers formed at the air–water interface using particles with different degrees of amphiphilicity and examined the response of the networks to applied compressions. Our findings demonstrate that JPs amphiphilicity is a crucial factor governing their orientation at the interface, which in turn dictates the complexity of the capillary interactions present and the mechanical properties of the ensuing networks. 
    more » « less
  5. Time-varying fields drive the motion of magnetic particles adsorbed on liquid drops due to interfacial constraints that couple magnetic torques to capillary forces. Such magneto-capillary particle dynamics and the associated fluid flows are potentially useful for propelling drop motion, mixing drop contents, and enhancing mass transfer between phases. The design of such functions benefits from the development and validation of predictive models. Here, we apply methods of Bayesian data analysis to identify and validate a dynamical model that accurately predicts the field-driven motion of a magnetic particle adsorbed at the interface of a spherical droplet. Building on previous work, we consider candidate models that describe particle tilting at the interface, field-dependent contributions to the magnetic moment, gravitational forces, and their combinations. The analysis of each candidate is informed by particle tracking data for a magnetic Janus sphere moving in a precessing field at different frequencies and angles. We infer the uncertain parameters of each model, criticize their ability to describe and predict experimental data, and select the most probable candidate, which accounts for gravitational forces and the tilting of the Janus sphere at the interface. We show how this favored model can predict complex particle trajectories with micron-level accuracy across the range of driving fields considered. We discuss how knowledge of this “best” model can be used to design experiments that inform accurate parameter estimates or achieve desired particle trajectories. 
    more » « less