skip to main content


Title: From Intramolecular (Circular) in an Isolated Molecule to Intermolecular Hole Delocalization in a Two‐Dimensional Solid‐State Assembly: The Case of Pillarene
Abstract

To achieve long‐range charge transport/separation and, in turn, bolster the efficiency of modern photovoltaic devices, new molecular scaffolds are needed that can self‐assemble in two‐dimensional (2D) arrays while maintaining both intra‐ and intermolecular electronic coupling. In an isolated molecule of pillarene, a single hole delocalizes intramolecularly via hopping amongst the circularly arrayed hydroquinone ether rings. The crystallization of pillarene cation radical produces a 2D self‐assembly with three intermolecular dimeric (sandwich‐like) contacts. Surprisingly, each pillarene in the crystal lattice bears a fractional formal charge of +1.5. This unusual stoichiometry of oxidized pillarene in crystals arises from effective charge distribution within the 2D array via an interplay of intra‐ and intermolecular electronic couplings. This important finding is expected to help advance the rational design of efficient solid‐state materials for long‐range charge transfer.

 
more » « less
PAR ID:
10050915
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
130
Issue:
8
ISSN:
0044-8249
Page Range / eLocation ID:
p. 2166-2171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To achieve long‐range charge transport/separation and, in turn, bolster the efficiency of modern photovoltaic devices, new molecular scaffolds are needed that can self‐assemble in two‐dimensional (2D) arrays while maintaining both intra‐ and intermolecular electronic coupling. In an isolated molecule of pillarene, a single hole delocalizes intramolecularly via hopping amongst the circularly arrayed hydroquinone ether rings. The crystallization of pillarene cation radical produces a 2D self‐assembly with three intermolecular dimeric (sandwich‐like) contacts. Surprisingly, each pillarene in the crystal lattice bears a fractional formal charge of +1.5. This unusual stoichiometry of oxidized pillarene in crystals arises from effective charge distribution within the 2D array via an interplay of intra‐ and intermolecular electronic couplings. This important finding is expected to help advance the rational design of efficient solid‐state materials for long‐range charge transfer.

     
    more » « less
  2. Abstract

    Intra‐ and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (≥70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4‐(5‐(4,8‐bis(3‐butylnonyl)‐6‐methylbenzo[1,2‐b:4,5‐b′]dithiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐butyloctyl)‐5,6‐difluoro‐7‐(5‐methylthiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole} (PBnDT‐FTAZ) clearly delineate this competition of ordering that prevents simultaneous long‐range order of both moieties. The long‐range sidechain ordering can be exploited as a transient state to fabricate PBnDT‐FTAZ films with an atypical edge‐on texture and 2.5× improved field‐effect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.

     
    more » « less
  3. Abstract

    2D molecular entities build next-generation electronic devices, where abundant elements of organic molecules are attractive due to the modern synthetic and stimuli control through chemical, conformational, and electronic modifications in electronics. Despite its promising potential, the insufficient control over charge states and electronic stabilities must be overcome in molecular electronic devices. Here, we show the reversible switching of modulated charge states in an exfoliatable 2D-layered molecular conductor based on bis(ethylenedithio)tetrathiafulvalene molecular dimers. The multiple stimuli application of cooling rate, current, voltage, and laser irradiation in a concurrent manner facilitates the controllable manipulation of charge crystal, glass, liquid, and metal phases. The four orders of magnitude switching of electric resistance are triggered by stimuli-responsive charge distribution among molecular dimers. The tunable charge transport in 2D molecular conductors reveals the kinetic process of charge configurations under stimuli, promising to add electric functions in molecular circuitry.

     
    more » « less
  4. Abstract

    The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor‐acceptor type of conjugated macrocycle (CDI‐CPP) featuring intramolecular charge‐transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X‐ray crystallography. Transient spectroscopy studies showed thatCDI‐CPPundergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra‐ and intermolecular charge‐transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.

     
    more » « less
  5. Abstract

    The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor‐acceptor type of conjugated macrocycle (CDI‐CPP) featuring intramolecular charge‐transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X‐ray crystallography. Transient spectroscopy studies showed thatCDI‐CPPundergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra‐ and intermolecular charge‐transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.

     
    more » « less