skip to main content


Title: Immunoisolating poly(ethylene glycol) based capsules support ovarian tissue survival to restore endocrine function
Abstract

A common irreversible adverse effect of life‐saving anticancer treatments is loss of gonadal endocrine function and fertility, calling for a need to focus on post‐treatment quality of life. Here, we investigated the use of poly(ethylene glycol)‐vinyl sulfone (PEG‐VS) based capsules to support syngeneic donor ovarian tissue for restoration of endocrine function in mice. We designed a dual immunoisolating capsule (PEG‐Dual) by tuning the physical properties of the PEG hydrogels and combining proteolytically degradable and nondegradable layers to meet the numerous requirements for encapsulation and immunoisolation of ovarian tissue, such as nutrient diffusion and tissue expansion. Tuning the components of the PEG‐Dual capsule to have similar physical properties allowed for concentric encapsulation. Upon implantation, the PEG‐based capsules supported ovarian tissue survival and led to a significant decrease in follicle stimulating hormone levels 60 days postimplantation. Mice that received the implants resumed regular estrous cycle activity and follicle development in the implanted grafts. The PEG‐Dual capsule provided an environment conducive for tissue survival, while providing a barrier to the host environment. This study demonstrated for the first time that immunoisolating PEG‐VS capsules can support ovarian follicular development resulting in the restoration of ovarian endocrine function and can be applied to future allogeneic studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1381–1389, 2018.

 
more » « less
NSF-PAR ID:
10051042
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
106
Issue:
5
ISSN:
1549-3296
Page Range / eLocation ID:
p. 1381-1389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract <p>Hormone replacement therapies have become important for treating diseases such as premature ovarian failure or menopausal complications. The clinical use of bioidentical hormones might significantly reduce some of the potential risks reportedly associated with the use of synthetic hormones. In the present study, we demonstrate the utility and advantage of a microfluidic chip culture system to enhance the development of personalized, on-demand, treatment modules using embryoid bodies (EBs). Functional EBs cultured on microfluidic chips represent a platform for personalized, patient-specific treatment cassettes that can be cryopreserved until required for treatment. We assessed the viability, differentiation, and functionality of EBs cultured and cryopreserved in this system. During extended microfluidic culture, estradiol, progesterone, testosterone, and anti-müllerian hormone levels were measured, and the expression of differentiated steroidogenic cells was confirmed by immunocytochemistry assay for the ovarian tissue markers anti-müllerian hormone receptor type II, follicle-stimulating hormone receptor, and inhibin β-A and the estrogen biosynthesis enzyme aromatase. Our studies showed that under microfluidic conditions, differentiated steroidogenic EBs continued to secrete estradiol and progesterone at physiologically relevant concentrations (30–120 pg/ml and 150–450 pg/ml, respectively) for up to 21 days. Collectively, we have demonstrated for the first time the feasibility of using a microfluidic chip system with continuous flow for the differentiation and extended culture of functional steroidogenic stem cell-derived EBs, the differentiation of EBs into cells expressing ovarian antigens in a microfluidic system, and the ability to cryopreserve this system with restoration of growth and functionality on thawing. These results present a platform for the development of a new therapeutic system for personalized medicine.</p></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10460728-migratory-strategy-explains-differences-timing-female-reproductive-development-seasonally-sympatric-songbirds" itemprop="url"> <span class='span-link' itemprop="name">Migratory strategy explains differences in timing of female reproductive development in seasonally sympatric songbirds</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1111/1365-2435.13386" target="_blank" title="Link to document DOI">https://doi.org/10.1111/1365-2435.13386  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Kimmitt, Abigail A.</span> <span class="sep">; </span><span class="author" itemprop="author">Hardman, Jack W.</span> <span class="sep">; </span><span class="author" itemprop="author">Stricker, Craig A.</span> <span class="sep">; </span><span class="author" itemprop="author">Ketterson, Ellen D.</span> <span class="sep">; </span><span class="author" itemprop="author">Sockman, ed., Keith</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2019-07-08">July 2019</time> , Functional Ecology) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    Divergent migratory strategies among populations can result in population‐level differences in timing of reproduction (allochrony) and local adaptation. However, the mechanisms underlying among‐population variation in timing are insufficiently understood, particularly in females.

    We studied differences in reproductive development and its related mechanisms along the hypothalamic–pituitary–gonadal axis (HPG) in closely related migratory and sedentary (i.e. resident) female dark‐eyed juncos (Junco hyemalis) living together in sympatry during early spring. Despite exposure to the same environmental cues in early spring, residents initiate breeding prior to the departure of migrants for their breeding grounds. We investigated whether residents would be more reproductively developed than migrants based on their behavioural differences. Alternatively, females could exhibit similar reproductive development in response to the same environmental cues despite differences in migratory behaviour. To compare their degree of reproductive development during seasonal sympatry and the underlying mechanisms of these differences, we collected ovarian and liver tissue in early spring prior to migration and compared transcript abundance of genes associated with reproduction using quantitative PCR. We also used stable hydrogen isotopes to infer relative breeding and wintering latitude of migrants.

    We found higher transcript abundance of luteinizing hormone receptor and aromatase in the ovary in addition to significantly heavier ovaries in residents than in migrants. Together, these results suggest greater sensitivity and response to upstream endocrine stimulation in resident females. Transcript abundance for other receptors in the ovary and liver associated with reproduction, however, did not differ between populations. When comparing ovarian development within migrants, females with lower hydrogen isotopes (indicating higher breeding latitudes) had smaller ovaries, suggesting that longer‐distance migrations may further delay reproductive development.

    Based on differences in ovary mass and transcript abundance, we conclude that females that differ in migratory strategy also differ in timing of reproductive development. These results support that divergent migratory behaviour drives allochrony and could enable reproductive isolation between populations; mechanistic differences at the level of gonadal stimulation can explain these differences in timing of reproductive development.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    Ingestible capsules have the potential to become an attractive alternative to traditional means of treating and detecting gastrointestinal (GI) disease. As device complexity increases, so too does the demand for more effective capsule packaging technologies to elegantly target specific GI locations. While pH-responsive coatings have been traditionally used for the passive targeting of specific GI regions, their application is limited due to the geometric restrictions imposed by standard coating methods. Dip, pan, and spray coating methods only enable the protection of microscale unsupported openings against the harsh GI environment. However, some emerging technologies have millimeter-scale components for performing functions such as sensing and drug delivery. To this end, we present the freestanding region-responsive bilayer (FRRB), a packaging technology for ingestible capsules that can be readily applied for various functional ingestible capsule components. The bilayer is composed of rigid polyethylene glycol (PEG) under a flexible pH-responsive Eudragit®FL 30 D 55, which protects the contents of the capsule until it arrives in the targeted intestinal environment. The FRRB can be fabricated in a multitude of shapes that facilitate various functional packaging mechanisms, some of which are demonstrated here. In this paper, we characterize and validate the use of this technology in a simulated intestinal environment, confirming that the FRRB can be tuned for small intestinal release. We also show a case example where the FRRB is used to protect and expose a thermomechanical actuator for targeted drug delivery.

     
    more » « less
  3. Abstract Mitochondria play important roles in ovarian follicle development. Mitochondrial dysfunction, including mitochondrial gene deficiency, impairs ovarian development. Here, we explored the role and mechanism of mitochondrial inner membrane gene Immp2l in ovarian follicle growth and development. Our results revealed that female Immp2l-/- mice were infertile, whereas Immp2l+/- mice were normal. Body and ovarian weights were reduced in the female Immp2l-/- mice, ovarian follicle growth and development were stunted in the secondary follicle stage. Although a few ovarian follicles were ovulated, the oocytes were not fertilized because of mitochondrial dysfunction. Increased oxidative stress, decreased estrogen levels, and altered genes expression of Wnt/β-catenin and steroid hormone synthesis pathways were observed in 28-day-old Immp2l-/- mice. The Immp2l mutation accelerated ovarian aging process, as no ovarian follicles were detected by age 5 months in Immp2l-/- mice. All the aforementioned changes in the Immp2l-/- mice were reversed by administration of antioxidant melatonin to the Immp2l-/- mice. Furthermore, our in vitro study using Immp2l knockdown granulosa cells confirmed that the Immp2l downregulation induced granulosa cell aging by enhancing reactive oxygen species (ROS) levels, suppressing Wnt16, increasing β-catenin, and decreasing steroid hormone synthesis gene cyp19a1 and estrogen levels, accompanied by an increase in the aging phenotype of granulosa cells. Melatonin treatment delayed granulosa cell aging progression. Taken together, Immp2l causes ovarian aging through the ROS-Wnt/β-catenin-estrogen (cyp19a1) pathway, which can be reversed by melatonin treatment. 
    more » « less
  4. Abstract

    The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long‐term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long‐lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.

     
    more » « less