We consider the problem of computing r-th order statistics, namely finding an assignment having rank r in a probabilistic graphical model. We show that the problem is NP-hard even when the graphical model has no edges (zero-treewidth models) via a reduction from the partition problem. We use this reduction, specifically a pseudo-polynomial time algorithm for number partitioning to yield a pseudo-polynomial time approximation algorithm for solving the r-th order statistics problem in zero- treewidth models. We then extend this algorithm to arbitrary graphical models by generalizing it to tree decompositions, and demonstrate via experimental evaluation on various datasets that our proposed algorithm is more accurate than sampling algorithms.
more »
« less
Efficient Inference for Untied MLNs
We address the problem of scaling up local-search or sampling-based inference in Markov logic networks (MLNs) that have large shared sub-structures but no (or few) tied weights. Such untied MLNs are ubiquitous in practical applications. However, they have very few symmetries, and as a result lifted inference algorithms--the dominant approach for scaling up inference--perform poorly on them. The key idea in our approach is to reduce the hard, time-consuming sub-task in sampling algorithms, computing the sum of weights of features that satisfy a full assignment, to the problem of computing a set of partition functions of graphical models, each defined over the logical variables in a first-order formula. The importance of this reduction is that when the treewidth of all the graphical models is small, it yields an order of magnitude speedup. When the treewidth is large, we propose an over-symmetric approximation and experimentally demonstrate that it is both fast and accurate.
more »
« less
- Award ID(s):
- 1652835
- PAR ID:
- 10051106
- Date Published:
- Journal Name:
- Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
- Page Range / eLocation ID:
- 4617 to 4624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Explaining the results of Machine learning algorithms is crucial given the rapid growth and potential applicability of these methods in critical domains including healthcare, defense, autonomous driving, etc. In this paper, we address this problem in the context of Markov Logic Networks (MLNs) which are highly expressive statistical relational models that combine first-order logic with probabilistic graphical models. MLNs in general are known to be interpretable models, i.e., MLNs can be understood more easily by humans as compared to models learned by approaches such as deep learning. However, at the same time, it is not straightforward to obtain human-understandable explanations specific to an observed inference result (e.g. marginal probability estimate). This is because, the MLN provides a lifted interpretation, one that generalizes to all possible worlds/instantiations, which are not query/evidence specific. In this paper, we extract grounded-explanations, i.e., explanations defined w.r.t specific inference queries and observed evidence. We extract these explanations from importance weights defined over the MLN formulas that encode the contribution of formulas towards the final inference results. We validate our approach in real world problems related to analyzing reviews from Yelp, and show through user-studies that our explanations are richer than state-of-the-art non-relational explainers such as LIME .more » « less
-
Statistical relational learning models are powerful tools that combine ideas from first-order logic with probabilistic graphical models to represent complex dependencies. Despite their success in encoding large problems with a compact set of weighted rules, performing inference over these models is often challenging. In this paper, we show how to effectively combine two powerful ideas for scaling inference for large graphical models. The first idea, lifted inference, is a wellstudied approach to speeding up inference in graphical models by exploiting symmetries in the underlying problem. The second idea is to frame Maximum a posteriori (MAP) inference as a convex optimization problem and use alternating direction method of multipliers (ADMM) to solve the problem in parallel. A well-studied relaxation to the combinatorial optimization problem defined for logical Markov random fields gives rise to a hinge-loss Markov random field (HLMRF) for which MAP inference is a convex optimization problem. We show how the formalism introduced for coloring weighted bipartite graphs using a color refinement algorithm can be integrated with the ADMM optimization technique to take advantage of the sparse dependency structures of HLMRFs. Our proposed approach, lifted hinge-loss Markov random fields (LHL-MRFs), preserves the structure of the original problem after lifting and solves lifted inference as distributed convex optimization with ADMM. In our empirical evaluation on real-world problems, we observe up to a three times speed up in inference over HL-MRFs.more » « less
-
null (Ed.)In this work, we examine online collective inference, the problem of maintaining and performing inference over a sequence of evolving graphical models. We utilize templated graphical models (TGM), a general class of graphical models expressed via templates and instantiated with data. A key challenge is minimizing the cost of instantiating the updated model. To address this, we define a class of exact and approximate context-aware methods for updating an existing TGM. These methods avoid a full re-instantiation by using the context of the updates to only add relevant components to the graphical model. Further, we provide stability bounds for the general online inference problem and regret bounds for a proposed approximation. Finally, we implement our approach in probabilistic soft logic, and test it on several online collective inference tasks. Through these experiments we verify the bounds on regret and stability, and show that our approximate online approach consistently runs two to five times faster than the offline alternative while, surprisingly, maintaining the quality of the predictions.more » « less
-
Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis of multivariate spatial data.more » « less