skip to main content


Title: GLMM BACI environmental impact analysis shows coastal dune restoration reduces seed predation on an endangered plant: Dune restoration reduces seed predation
NSF-PAR ID:
10051109
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
26
Issue:
6
ISSN:
1061-2971
Page Range / eLocation ID:
p. 1190-1194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding patterns of seed predation in tallgrass prairie restorations is vital because seed additions are often used by managers to increase diversity and promote native species. However, the success of seed additions depends on the extent of seed predation. It is not clear how seed predation varies through time and to what extent it is affected by various commonly used management techniques in grasslands (e.g. spring or fall prescribed burns, mowing). We examined how predation ofSorghastrum nutansseeds changed during eight trials between June 2018 and April 2019 in plots that received one of four different plant litter removal treatments (fall mow, fall burn, spring burn, and unaltered control). Granivory varied throughout the year, reaching its peak in the late fall and early winter. However, we found that seed predators consumed significantly fewer seeds when litter was removed following fall burn and fall mow treatment applications. These treatments occurred during times when granivory was otherwise high in areas where litter remained intact (control and spring burn plots). Our findings highlight the importance of management decisions and how they interact with granivory in grassland restorations. Both time of year and litter cover determine seed predation rates; seed predators consume more seeds when seeds are abundant but rely on intact litter cover while foraging. This suggests that if seeds are added during the fall, litter should be removed to minimize the loss of seeds to granivory. Alternatively, seed additions during the spring are likely to experience lower rates of seed predation.

     
    more » « less
  2. Abstract

    Small mammals are key scatter hoarders in forest ecosystems, acting as both seed predators and dispersers. The outcome of their interactions (i.e., predation vs. dispersal) is determined by a series of decisions made by small mammals, such as the choice of seed, whether the seed is immediately consumed or cached, and where it is cached. These decisions are influenced by a variety of factors, including the intrinsic traits of the seed, the individual personality of the scatter hoarder, and the perceived risk of predation while foraging. Furthermore, these factors may all interact to dictate the fate of the seed, with consequences for forest regeneration. Nevertheless, the ways in which perceived predation risk and personality interact to affect the seed dispersal decisions of scatter hoarders are still poorly understood. To contribute in filling this knowledge gap, we tested the hypotheses that southern red‐backed voles (Myodes gapperi), an important scatter hoarder in forest ecosystems, would exhibit personality‐mediated foraging and that predation risk would alter associations between personality and seed dispersal. We conducted a large‐scale field experiment, offering seed trays at stations with altered risk levels and recorded foraging decisions of free‐ranging voles with known personalities. We found that personality and perceived predation risk influenced decisions made by foraging voles. Specifically, docility, and boldness predicted foraging site selection, boldness predicted seed species selection and the number of seeds individuals selected, and the tendency to explore of an individual predicted whether voles would remove or consume seeds. Predation risk, mediated by the amount of cover at a site and by moon illumination, affected which foraging site individuals chose, seed species selection, and the probability of removal versus consumption. We did not find support for an interaction between personality and predation risk in predicting foraging decisions. These findings highlight the importance of scatter hoarder personality and perceived predation risk in affecting foraging decisions, with important consequences for seed dispersal and implications for altered patterns of forest regeneration in areas with different small mammal personality distributions or landscapes of fear.

     
    more » « less
  3. Coastal dunes are globally recognized as natural features that can be important adaptation approaches for climate change along urban and natural shores. We evaluated the recovery of coastal dunes on an intensively groomed urban beach in southern California over a six-year period after grooming was discontinued. Restoration actions were minimal and included installation of three sides of perimeter sand fencing, cessation of mechanical grooming and driving, and the addition of seeds of native dune plants. To track recovery, we conducted physical and biological surveys of the restoration site and an adjacent control site (groomed beach) using metrics including sand accretion, elevation, foredune and hummock formation, vegetation recovery, and wildlife use. Sediment accretion, elevation, and geomorphic complexity increased over time in the restoration site, largely in association with sand fencing and dune vegetation. A foredune ridge (maximum elevation increase of 0.9 m) and vegetated hummocks developed, along with a general increase in elevation across the restoration site (0.3 m). After six years, an estimated total volume of approximately 1,730 m3of sand had accreted in the restoration site and 540 m3of sand had accreted in the foredune ridge. Over the same period, more than a meter of sediment (vertical elevation change) accumulated along the perimeter sand fencing. Groomed control areas remained flat and uniform. The total cover of vegetation in the restoration site increased over time to a maximum of approximately 7% cover by the sixth year. No vegetation was observed on the groomed control site. Native plant species formed distinct zones across the restoration site beginning by the second year and increasing over time, with dune forming species aggregating closest to the ocean in association with the incipient foredune ridge. Ecological functions observed in the restoration area included presence of dune invertebrates, shorebird roosting, and use by a breeding federally threatened shorebird, the western snowy plover (Charadrius nivosus nivosus). Our findings on geomorphic and ecological responses of a pilot dune restoration on a heavily groomed urban beach provide new insights on the opportunities and expectations for restoring dunes as nature-based solutions for climate adaptation on urban shorelines.

     
    more » « less