Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone: MEMBRANE DISRUPTION FOR OSTEOCYTE MECHANOSENSATION
- Award ID(s):
- 1727949
- PAR ID:
- 10051155
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Orthopaedic Research
- ISSN:
- 0736-0266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The generation of pressure perturbations in matter stimulated by pulsed light is a method widely recognized as the photoacoustic or light‐induced thermoelastic effect. In a series of psychophysical experiments, the robustness of the tactile perception generated with a variety of light sources is examined: a diverging pulsed laser used for photoacoustic tomography optical parameter oscillation (OPO), a miniature diode laser (MDL), and a commercial digital light processing (DLP) projector. It is demonstrated that participants can accurately detect, categorically describe the sensations, and discern the direction of pulsed light travel. High detection accuracy is reported as follows: (d′ = 4.95 (OPO);d′ = 2.78 (modulated MDL);d′ = 2.99 (DLP)) of the stimulus on glabrous skin coated with a thin layer of dye absorber. For all light sources, the predominant sensation is felt as vibration at the distal phalanx (i.e., fingertip, 55.21–57.29%) and the proximal phalanx (41.67–44.79%). At the fingertip, thermal sensations are perceived less frequently than mechanical ones. Moreover, these haptic effects are preserved under a wide range of pulse widths, spot sizes, optical energies, and wavelengths of the light sources. This form of sensory stimulation demonstrates a generalizable non‐contact, non‐optogenetic, in situ activation of the mechanosensory system.more » « less
-
A worm called Caenorhabditis elegans has a nervous system made up of only 302 neurons, far fewer than the billions of cells that comprise our own brains. And yet these few hundred neurons are enough for these worms to detect and respond to their surroundings. C. elegans is thus a popular choice for studying how nervous systems process sensory information and use it to control behavior. Yet, most experiments to date have used only simple stimuli, such as taps or pokes, and studied a handful of behaviors, such as whether or not a worm stops moving or backs up. This limits the conclusions it has been possible to draw. Liu et al. therefore set out to determine how the worm’s nervous system responds to more complex stimuli. These included physical stimuli, such as taps on the side of the dish containing the worms, as well as simulated stimuli. To generate the latter, Liu et al. used a technique called optogenetics to directly activate the neurons in the worm’s body that would normally detect information from the senses, by simply shining a light on the worms. Doing so gives the worm the sensation of a physical stimulus, even though none was present. Liu et al. then used mathematics to examine the relationships between the stimuli and the worms’ responses. The results confirmed that worms usually respond to simple stimuli, such as taps on the side of their dish, by backing up. But they also revealed more advanced forms of stimulus processing. The worms responded differently to stimuli that increased over time versus decreased, for example. A worm's response to a stimulus also varied depending on what the worm was doing at the time. Worms that were in the middle of turns, for instance, ignored stimuli to which they would normally respond. This suggests that an animal’s current behavior influences how its nervous system interprets sensory information. The discovery of relatively sophisticated responses to sensory stimuli in C. elegans indicates that even simple nervous systems are capable of flexible sensory processing. This lays a foundation for understanding how neural circuits interpret sensory signals. Building on this work will ultimately help us understand how more complicated nervous systems interpret and respond to the world.more » « less
-
Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases.more » « less
An official website of the United States government
