skip to main content


Title: Folate action in nervous system development and disease: Folate Action in the Nervous System
NSF-PAR ID:
10051169
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Developmental Neurobiology
Volume:
78
Issue:
4
ISSN:
1932-8451
Page Range / eLocation ID:
391 to 402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. In this study, we designed a tissue-engineered neurocardiac model to help us examine the role of neuronal regulation and confirm the importance of neural innervation techniques for the regeneration of cardiac tissue. A three-dimensional (3D) bioprinted neurocardiac scaffold composed of a mixture of gelatin–alginate and alginate–genipin–fibrin hydrogels was developed with a 2:1 ratio of AC16 cardiomyocytes (CMs) and retinoic acid-differentiated SH-SY5Y neuronal cells (NCs) respectively. A unique semi-3D bioprinting approach was adopted, where the CMs were mixed in the cardiac bioink and printed using an anisotropic accordion design to mimic the physiological tissue architecture in vivo. The voids in this 3D structure were methodically filled in using a NC–gel mixture and crosslinked. Confocal fluorescent imaging using microtubule-associated protein 2 (MAP-2) and anticholine acetyltransferase (CHAT) antibodies for labeling the NCs and the MyoD1 antibody for the CMs revealed functional coupling between the two cell types in the final crosslinked structure. These data confirmed the development of a relevant neurocardiac model that could be used to study neurocardiac modulation under physiological and pathological conditions.

     
    more » « less
  3. Most animals develop from juveniles, which cannot reproduce, to sexually mature adults. The most obvious signs of this transition are changes in body shape and size. However, changes also take place in the brain that enable the animals to adapt their behavior to the demands of adulthood. For example, fully fed adult male roundworms will leave a food source to search for mates, whereas juvenile males will continue feeding. The transition to sexual maturity needs to be carefully timed. Too early, and the animal risks compromising key stages of development. Too late, and the animal may be less competitive in the quest for reproductive success. Cues in the environment, such as the presence of food and mates, interact with timing mechanisms in the brain to trigger sexual maturity. But how these mechanisms work – in particular where and how an animal keeps track of its developmental stage – is not well understood. In the roundworm species Caenorhabditis elegans, waves of gene activity, known collectively as the heterochronic pathway, determine patterns of cell growth as animals mature. Through further studies of these worms, Lawson et al. now show that these waves also control the time at which neural circuits mature. In addition, the waves of activity occur inside the nervous system itself, rather than in a tissue that sends signals to the nervous system. Moreover, they occur independently inside many different neurons. Each neuron thus has its own molecular clock for keeping track of development. Several of the genes critical for developmental timekeeping in worms are also found in mammals, including two genes that help to control when puberty starts in humans. If one of these genes – called MKRN3 – does not work correctly, it can lead to a condition that causes individuals to go through puberty several years earlier than normal. Studying the mechanisms identified in roundworms may help us to better understand this disorder. More generally, future work that builds on the results presented by Lawson et al. will help to reveal how environmental cues and gene activity interact to control when we become adults. 
    more » « less