skip to main content


Title: In Situ Time‐Dependent and Progressive Oxidation of Reduced State Functionalities at the Nanoscale of Carbon Nanoparticles for Polarity‐Driven Multiscale Near‐Infrared Imaging
Abstract

Surface abundant oxidize‐able functionalities at the nanoscale of carbon dots are prone to undergo sequential aerial oxidation leading to polarity‐driven wavelength tuning of their photoluminescence and consequently boost their quantum yields. With the progression of time, aerial oxidation is gradually increased from 1 to 6 h; consequently, a remarkable shift in the emission peak is observed, likely due to a gradual decrease in their respective band gaps leading to red shift of their photoluminescence. These bands are found to be dependent on the time of hydrothermal treatment of the model small molecules, i.e., benzophenone imine, and not on the size of the carbon core, as is the typical case for semiconductor quantum dots. Due to their high quantum yield (≈31%), it is demonstrated that these wavelength‐tuned carbon nanoparticles can be efficiently used for multiscale bioimaging, i.e., intracellular, deep tissue ex vivo and in vivo fluorescence bioimaging.

 
more » « less
PAR ID:
10051193
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Biosystems
Volume:
2
Issue:
3
ISSN:
2366-7478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the prominent characteristics of carbon-based luminescent nanostructures (known colloquially as carbon dots), such as inexpensive precursors, excellent hydrophilicity, low toxicity, and intrinsic fluorescence, these nanomaterials are regarded as potential candidates to replace traditional quantum dots in some applications. As such, research in the field of carbon dots has been increasing in recent years. In this mini-review, we summarize recent progress in studies of multicolor carbon dots focusing on potential photoluminescence (PL) mechanisms, strategies for effective syntheses, and applications in ion/molecule and temperature sensing, and high-resolution bioimaging techniques. 
    more » « less
  2. Carbon “quantum” dots or carbon dots (CDots) exploit and enhance the intrinsic photoexcited state properties and processes of small carbon nanoparticles via effective nanoparticle surface passivation by chemical functionalization with organic species. The optical properties and photoinduced redox characteristics of CDots are competitive to those of established conventional semiconductor quantum dots and also fullerenes and other carbon nanomaterials. Highlighted here are major advances in the exploration of CDots for their serving as high-performance yet nontoxic fluorescence probes for one- and multi-photon bioimaging in vitro and in vivo, and for their uniquely potent antimicrobial function to inactivate effectively and efficiently some of the toughest bacterial pathogens and viruses under visible/natural or ambient light conditions. Opportunities and challenges in the further development of the CDots platform and related technologies are discussed. 
    more » « less
  3. Abstract

    Graphene quantum dots (GQDs) are carbon‐based, nanoscale particles that exhibit excellent chemical, physical, and biological properties that allow them to excel in a wide range of applications in nanomedicine. The unique electronic structure of GQDs confers functional attributes onto these nanomaterials such as strong and tunable photoluminescence for use in fluorescence bioimaging and biosensing, a high loading capacity of aromatic compounds for small‐molecule drug delivery, and the ability to absorb incident radiation for use in the cancer‐killing techniques of photothermal and photodynamic therapy. Recent advances in the development of GQDs as novel, multifunctional biomaterials are presented with a focus on their physicochemical, electronic, magnetic, and biological properties, along with a discussion of technical progress in the synthesis of GQDs. Progress toward the application of GQDs in bioimaging, biosensing, and therapy is reviewed, along with a discussion of the current limitations and future directions of this exciting material.

     
    more » « less
  4. Abstract

    Small molecular NIR‐II dyes are highly desirable for various biomedical applications. However, NIR‐II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR‐II dyes are reported. These dyes can be excited at 850–915 nm and emitted at 1280–1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host–guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self‐assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch‐On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host–guest complexes (Switch‐Off) providing flexibility in the user‐defined tuning of photoluminescence. The turn‐ON complex found to have comparable quantum yield to the commercially available near‐infrared fluorophore, IR‐26. The aqueous dispersibility, cellular and blood compatibility, and NIR‐II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host–guest complexation and supramolecular self‐assembly, is demonstrated here for three new NIR‐II dyes.

     
    more » « less
  5. In this study, carbon dots are synthesized hydrothermally from loblolly pine using top-down and bottom-up processes. The bottom-up process dialyzed carbon dots from hydrothermally treated process liquid. Meanwhile, hydrochar was oxidized into carbon dots in the top-down method. Carbon dots from top-down and bottom-up processes were compared for their yield, size, functionality, and quantum properties. Furthermore, hydrothermal treatment temperature and residence time were evaluated on the aforementioned properties of carbon dots. The results indicate that the top-down method yields higher carbon dots than bottom-up in any given hydrothermal treatment temperature and residence time. The size of the carbon dots decreases with the increase in reaction time; however, the size remains similar with the increase in hydrothermal treatment temperature. Regarding quantum yield, the carbon dots from the top-down method exhibit higher quantum yields than bottom-up carbon dots where the quantum yield reaches as high as 48%. The only exception of the bottom-up method is the carbon dots prepared at a high hydrothermal treatment temperature (i.e., 260 °C), where relatively higher quantum yield (up to 18.1%) was observed for the shorter reaction time. Overall, this study reveals that the properties of lignocellulosic biomass-derived carbon dots differ with the synthesis process as well as the processing parameters. 
    more » « less