skip to main content


Title: Scaling of Primate Forearm Muscle Architecture as It Relates to Locomotion and Posture: SCALING OF PRIMATE FOREARM MM ARCHITECTURE
NSF-PAR ID:
10051237
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
301
Issue:
3
ISSN:
1932-8486
Page Range / eLocation ID:
484 to 495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiplet-based architectures have been proposed to scale computing systems for deep neural networks (DNNs). Prior work has shown that for the chiplet-based DNN accelerators, the electrical network connecting the chiplets poses a major challenge to system performance, energy consumption, and scalability. Some emerging interconnect technologies such as silicon photonics can potentially overcome the challenges facing electrical interconnects as photonic interconnects provide high bandwidth density, superior energy efficiency, and ease of implementing broadcast and multicast operations that are prevalent in DNN inference. In this paper, we propose a chiplet-based architecture named SPRINT for DNN inference. SPRINT uses a global buffer to simplify the data transmission between storage and computation, and includes two novel designs: (1) a reconfigurable photonic network that can support diverse communications in DNN inference with minimal implementation cost, and (2) a customized dataflow that exploits the ease of broadcast and multicast feature of photonic interconnects to support highly parallel DNN computations. Simulation studies using ResNet50 DNN model show that SPRINT achieves 46% and 61% execution time and energy consumption reduction, respectively, as compared to other state-of-the-art chiplet-based architectures with electrical or photonic interconnects. 
    more » « less
  2. Applications where continuous streams of data are passed through large data structures are becoming of increasing importance. However, their execution on conventional architectures, especially when parallelism is desired to boost performance, is highly inefficient. The primary issue is often with the need to stream large numbers of disparate data items through the equivalent of very large hash tables distributed across many nodes. This paper builds on some prior work on the Firehose streaming benchmark where an emerging architecture using threads that can migrate through memory has shown to be much more efficient at such problems. This paper extends that work to use a second generation system to not only show that same improved efficiency ( 10X) for larger core counts, but even significantly higher raw performance (with FPGA-based cores running at 1/10th the clock of conventional systems). Further, this additional data yields insight into what resources represent the bottlenecks to even more performance, and make a reasonable projection that implementation of such an architecture with current technology would lead to 10X performance gain on an apples-to-apples basis with conventional systems. 
    more » « less
  3. null (Ed.)