skip to main content


Title: Leg Muscle Architecture in Primates and Its Correlation with Locomotion Patterns: LEG MUSCLE ARCHITECTURE IN PRIMATES
NSF-PAR ID:
10051240
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
301
Issue:
3
ISSN:
1932-8486
Page Range / eLocation ID:
515 to 527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monotremes are a group of egg-laying mammals, possessing a mosaic of ancestral and derived anatomical features. Despite much interest in monotremes from phylogenetic, morphological, and ecological perspectives, they have been the subject of relatively few biomechanical studies. In this study, we examined shoulder and proximal forelimb muscle anatomy and architecture in the short-beaked echidna, Tachyglossus aculeatus, through contrast-enhanced computed tomography and gross dissection. Muscle architecture is a major determinant of muscle function and can indicate specialized muscle roles, such as the capacity for generating large forces (through large physiological cross-sectional area, PCSA) or working ranges (through long fascicle lengths). We hypothesized that some muscles would exhibit architectural specializations convergent with other fossorial and/or sprawling animals, and that other muscles would reflect the echidna’s unusual anatomy and locomotor style. Instead, we found the shoulder and proximal forelimb muscles in echidna to have little variation in their architecture. The muscles generally had long fascicles and small-to-intermediate PCSAs, consistent with force production over a wide working range. Further, muscles did not show overt differences in architecture that, in therian mammals, have been linked to increased forelimb mobility and the transition from sprawling to parasagittal posture. Our measures of architectural disparity placed the echidna closer to the tegu lizard than other sprawling fossorial mammals (e.g., mole). The low architectural diversity found in the echidna’s shoulder and proximal forelimb muscles is interpreted as a lack of functional specialization into distinct roles. We hope our study will contribute to greater understanding of monotreme anatomy and biomechanical function, and to the reconstruction of musculoskeletal evolution in mammals. 
    more » « less
  2. The evolution of upright limb posture in mammals may have enabled modifications of the forelimb for diverse locomotor ecologies. A rich fossil record of non-mammalian synapsids holds the key to unraveling the transition from “sprawling” to “erect” limb function in the precursors to mammals, but a detailed understanding of muscle functional anatomy is a necessary prerequisite to reconstructing postural evolution in fossils. Here we characterize the gross morphology and internal architecture of muscles crossing the shoulder joint in two morphologically-conservative extant amniotes that form a phylogenetic and morpho-functional bracket for non-mammalian synapsids: the Argentine black and white tegu Salvator merianae and the Virginia opossum Didelphis virginiana . By combining traditional physical dissection of cadavers with nondestructive three-dimensional digital dissection, we find striking similarities in muscle organization and architectural parameters. Despite the wide phylogenetic gap between our study species, distal muscle attachments are notably similar, while differences in proximal muscle attachments are driven by modifications to the skeletal anatomy of the pectoral girdle that are well-documented in transitional synapsid fossils. Further, correlates for force production, physiological cross-sectional area (PCSA), muscle gearing (pennation), and working range (fascicle length) are statistically indistinguishable for an unexpected number of muscles. Functional tradeoffs between force production and working range reveal muscle specializations that may facilitate increased girdle mobility, weight support, and active stabilization of the shoulder in the opossum—a possible signal of postural transformation. Together, these results create a foundation for reconstructing the musculoskeletal anatomy of the non-mammalian synapsid pectoral girdle with greater confidence, as we demonstrate by inferring shoulder muscle PCSAs in the fossil non-mammalian cynodont Massetognathus pascuali . 
    more » « less
  3. Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization. Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute to a robust understanding of the development and mechanics of striated muscles. 
    more » « less