This paper studies the prediction task of tensor-on-tensor regression in which both covariates and responses are multi-dimensional arrays (a.k.a., tensors) across time with arbitrary tensor order and data dimension. Existing methods either focused on linear models without accounting for possibly nonlinear relationships between covariates and responses, or directly employed black-box deep learning algorithms that failed to utilize the inherent tensor structure. In this work, we propose a Factor Augmented Tensor-on-Tensor Neural Network (FATTNN) that integrates tensor factor models into deep neural networks. We begin with summarizing and extracting useful predictive information (represented by the ``factor tensor'') from the complex structured tensor covariates, and then proceed with the prediction task using the estimated factor tensor as input of a temporal convolutional neural network. The proposed methods effectively handle nonlinearity between complex data structures, and improve over traditional statistical models and conventional deep learning approaches in both prediction accuracy and computational cost. By leveraging tensor factor models, our proposed methods exploit the underlying latent factor structure to enhance the prediction, and in the meantime, drastically reduce the data dimensionality that speeds up the computation. The empirical performances of our proposed methods are demonstrated via simulation studies and real-world applications to three public datasets. Numerical results show that our proposed algorithms achieve substantial increases in prediction accuracy and significant reductions in computational time compared to benchmark methods.
more »
« less
Discretized conformal prediction for efficient distribution‐free inference
In regression problems where there is no known true underlying model, conformal prediction methods enable prediction intervals to be constructed without any assumptions on the distribution of the underlying data, except that the training and test data are assumed to be exchangeable. However, these methods bear a heavy computational cost—and, to be carried out exactly, the regression algorithm would need to be fitted infinitely many times. In practice, the conformal prediction method is run by simply considering only a finite grid of finely spaced values for the response variable. This paper develops discretized conformal prediction algorithms that are guaranteed to cover the target value with the desired probability and that offer a trade‐off between computational cost and prediction accuracy. Copyright © 2018 John Wiley & Sons, Ltd.
more »
« less
- Award ID(s):
- 1654076
- PAR ID:
- 10052304
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Stat
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2049-1573
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Conformal predictions transform a measurable, heuristic notion of uncertainty into statistically valid confidence intervals such that, for a future sample, the true class prediction will be included in the conformal prediction set at a predetermined confidence. In a Bayesian perspective, common estimates of uncertainty in multivariate classification, namelyp‐values, only provide the probability that the data fits the presumed class model,P(D|M). Conformal predictions, on the other hand, address the more meaningful probability that a model fits the data,P(M|D). Herein, two methods to perform inductive conformal predictions are investigated—the traditional Split Conformal Prediction that uses an external calibration set and a novel Bagged Conformal Prediction, closely related to Cross Conformal Predictions, that utilizes bagging to calibrate the heuristic notions of uncertainty. Methods for preprocessing the conformal prediction scores to improve performance are discussed and investigated. These conformal prediction strategies are applied to identifying four non‐steroidal anti‐inflammatory drugs (NSAIDs) from hyperspectral Raman imaging data. In addition to assigning meaningful confidence intervals on the model results, we herein demonstrate how conformal predictions can add additional diagnostics for model quality and method stability.more » « less
-
Deep learning models are being adopted and applied across various critical medical tasks, yet they are primarily trained to provide point predictions without providing degrees of confidence. Medical practitioner’s trustworthiness of deep learning models is increased when paired with uncertainty estimations. Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals, allowing for a view of the model’s uncertainty. However, popular uncertainty estimation methods for conformal prediction fail to provide highly accurate heteroskedastic intervals. In this paper, we propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest. We show that the deep regression forest variance improves the efficiency and coverage of normalized inductive conformal prediction when applied on an anti-cancer drug sensitivity prediction task.more » « less
-
Abstract Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn test point with a prescribed probability. However, in practice, data-driven methods are often used to identify specific test unit(s) of interest, requiring uncertainty quantification tailored to these focal units. In such cases, marginally valid conformal prediction intervals may fail to provide valid coverage for the focal unit(s) due to selection bias. This article presents a general framework for constructing a prediction set with finite-sample exact coverage, conditional on the unit being selected by a given procedure. The general form of our method accommodates arbitrary selection rules that are invariant to the permutation of the calibration units and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We also work out computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction.more » « less
-
Abstract Conformal prediction provides machine learning models with prediction sets that offer theoretical guarantees, but the underlying assumption of exchangeability limits its applicability to time series data. Furthermore, existing approaches struggle to handle multi-step ahead prediction tasks, where uncertainty estimates across multiple future time points are crucial. We propose JANET (JointAdaptive predictioN-regionEstimation forTime-series), a novel framework for constructing conformal prediction regions that are valid for both univariate and multivariate time series. JANET generalises the inductive conformal framework and efficiently produces joint prediction regions with controlledK-familywise error rates, enabling flexible adaptation to specific application needs. Our empirical evaluation demonstrates JANET’s superior performance in multi-step prediction tasks across diverse time series datasets, highlighting its potential for reliable and interpretable uncertainty quantification in sequential data.more » « less
An official website of the United States government
