skip to main content


Title: Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB 11 H 12 and NaCB 11 H 12
Abstract

The disordered phases of LiCB11H12and NaCB11H12possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry‐breaking carbon atom in CB11H12also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 × 1010s−1, suggesting the underlying energy landscape fluctuates dynamically on diffusion‐relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon‐modified cation–anion interaction accounts for the higher ionic conductivity in CB11H12salts compared with B12H122−.

 
more » « less
NSF-PAR ID:
10053443
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
8
Issue:
15
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    C(1)‐vinylation of [closo‐1‐CB9H10](A) and [closo‐1‐CB11H12](B) with 4‐benzyloxystyryl iodide followed by hydrogenation of the double bond and reductive deprotection of the phenol functionality led to C(1)‐(4‐hydroxyphenethyl) derivatives. The phenol functionality was protected as the acetate. The esters were then treated with PhI(OAc)2and the resulting isomers were separated kinetically (for derivatives of anionA) or by chromatography (for derivatives of anionB) giving the difunctionalized building blocks in overall yields of 9 % and 50 %, respectively. A similar series of reactions was performed starting with anionsAandBand 4‐methoxystyryl bromide and iodide. Significant differences in the reactivity of derivatives of the two carborane anions were rationalized with DFT computational results. Application of the difunctionalized carboranes as building blocks was demonstrated through preparation of two ionic liquid crystals. The extensive synthetic work is accompanied by single crystal XRD analysis of six derivatives.

     
    more » « less
  2. Abstract

    Antiperovskite structure compounds (X3AB, where X is an alkali cation and A and B are anions) have the potential for highly correlated motion between the cation and a cluster anion on the A or B site. This so‐called “paddle‐wheel” mechanism may be the basis for enhanced cation mobility in solid electrolytes. Through combined experiments and modeling, the first instance of a double paddle‐wheel mechanism, leading to fast sodium ion conduction in the antiperovskite Na3−xO1−x(NH2)x(BH4), is shown. As the concentration of amide (NH2) cluster anions is increased, large positive deviations in ionic conductivity above that predicted from a vacancy diffusion model are observed. Using electrochemical impedance spectroscopy, powder X‐ray diffraction, synchrotron X‐ray diffraction, neutron diffraction, ab initio molecular dynamics simulations, and NMR, the cluster anion rotational dynamics are characterized and it is found that cation mobility is influenced by the rotation of both NH2and BH4species, resulting in sodium ion conductivity a factor of 102higher atx = 1 than expected for the vacancy mechanism alone. Generalization of this phenomenon to other compounds could accelerate fast ion conductor exploration and design.

     
    more » « less
  3. null (Ed.)
    Non-luminescent, isostructural crystals of [(C 6 H 11 NC) 2 Au](EF 6 )·C 6 H 6 (E = As, Sb) lose benzene upon standing in air to produce green luminescent (E = As) or blue luminescent (E = Sb) powders. Previous studies have shown that the two-coordinate cation, [(C 6 H 11 NC) 2 Au] + , self-associates to form luminescent crystals that contain linear or nearly linear chains of cations and display unusual polymorphic, vapochromic, and/or thermochromic properties. Here, we report the formation of non-luminescent crystalline salts in which individual [(C 6 H 11 NC) 2 Au] + ions are isolated from one another. In [(C 6 H 11 NC) 2 Au](BArF 24 ) ((BArF 24 ) − is tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) each cation is surrounded by two anions that prohibit any close approach of the gold ions. Crystallization of [(C 6 H 11 NC) 2 Au](EF 6 ) (E = As or Sb, but not P) from benzene solution produces colorless, non-emissive crystals of the solvates [(C 6 H 11 NC) 2 Au](EF 6 )·C 6 H 6 . These two solvates are isostructural and contain columns in which cations and benzene molecules alternate. With the benzene molecules separating the cations, the shortest distances between gold ions are 6.936(2) Å for E = As and 6.9717(19) Å for E = Sb. Upon removal from the mother liquor, these crystals crack due to the loss of benzene from the crystal and form luminescent powders. Crystals of [(C 6 H 11 NC) 2 Au](SbF 6 )·C 6 H 6 that powder out form a pale yellow powder with a blue luminescence with emission spectra and powder X-ray diffraction data that show that the previously characterized [(C 6 H 11 NC) 2 Au](SbF 6 ) is formed. In the process, the distances between the gold( i ) ions decrease to ∼3 Å and half of the cyclohexyl groups move from an axial orientation to an equatorial one. Remarkably, when crystals of [(C 6 H 11 NC) 2 Au](AsF 6 )·C 6 H 6 stand in air, they lose benzene and are converted into the yellow, green-luminescent polymorph of [(C 6 H 11 NC) 2 Au](AsF 6 ) rather than the colorless, blue-luminescent polymorph. Paradoxically, the yellow, green-luminescent powder that forms as well as authentic crystals of the yellow, green-luminescent polymorph of [(C 6 H 11 NC) 2 Au](AsF 6 ) are sensitive to benzene vapor and are converted by exposure to benzene vapor into the colorless, blue-luminescent polymorph. 
    more » « less
  4. Abstract

    Aluminyl anions are low‐valent, anionic, and carbenoid aluminum species commonly found stabilized with potassium cations from the reaction of Al‐halogen precursors and alkali compounds. These systems are very reactive toward the activation ofσ‐bonds and in reactions with electrophiles. Various research groups have detected that the potassium atoms play a stabilization role via electrostatic and cationinteractions with nearby (aromatic)‐carbocyclic rings from both the ligand and from the reaction with unsaturated substrates. Since stabilizing K⋯H bonds are witnessed in the activation of this class of molecules, we aim to unveil the role of these metals in the activation of the smaller and less polarizable H2molecule, together with a comprehensive characterization of the reaction mechanism. In this work, the activation of H2utilizing a NON‐xanthene‐Al dimer, [K{Al(NON)}]2(D) and monomeric, [Al(NON)](M) complexes are studied using density functional theory and high‐level coupled‐cluster theory to reveal the potential role of K+atoms during the activation of this gas. Furthermore, we aim to reveal whetherDis more reactive thanM(or vice versa), or if complicity between the two monomer units exits within theDcomplex toward the activation of H2. The results suggest that activation energies using the dimeric and monomeric complexes were found to be very close (around 33 kcal mol−1). However, a partition of activation energies unveiled that the nature of the energy barriers for the monomeric and dimeric complexes are inherently different. The former is dominated by a more substantial distortion of the reactants (and increased interaction energies between them). Interestingly, during the oxidative addition, the distortion of the Al complex is minimal, while H2distorts the most, usually over 0.77. Overall, it is found here that electrostatic and induction energies between the complexes and H2are the main stabilizing components up to the respective transition states. The results suggest that the K+atoms act as stabilizers of the dimeric structure, and their cooperative role on the reaction mechanism may be negligible, acting as mere spectators in the activation of H2. Cooperation between the two monomers inDis lacking, and therefore the subsequent activation of H2is wholly disengaged.

     
    more » « less
  5. Abstract Using data from the Green Bank Telescope (GBT) Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey, we report the first astronomical detection of the C 10 H − anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C 10 H − . From the velocity stacked data and the matched filter response, C 10 H − is detected at >9 σ confidence level at a column density of 4.04 − 2.23 + 10.67 × 10 11 cm −2 . A dedicated search for the C 10 H radical was also conducted toward TMC-1. In this case, the stacked molecular emission of C 10 H was detected at a ∼3.2 σ confidence interval at a column density of 2.02 − 0.82 + 2.68 × 10 11 cm −2 . However, as the determined confidence level is currently <5 σ , we consider the identification of C 10 H as tentative. The full GOTHAM data set was also used to better characterize the physical parameters including column density, excitation temperature, line width, and source size for the C 4 H, C 6 H, and C 8 H radicals and their respective anions, and the measured column densities were compared to the predictions from a gas/grain chemical formation model and from a machine learning analysis. Given the measured values, the C 10 H − /C 10 H column density ratio is ∼ 2.0 − 1.6 + 5.9 —the highest value measured between an anion and neutral species to date. Such a high ratio is at odds with current theories for interstellar anion chemistry. For the radical species, both models can reproduce the measured abundances found from the survey; however, the machine learning analysis matches the detected anion abundances much better than the gas/grain chemical model, suggesting that the current understanding of the formation chemistry of molecular anions is still highly uncertain. 
    more » « less