skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Effect of initial texture on fatigue properties of extruded ZK60 magnesium alloy
Abstract

The effect of initial texture on cyclic deformation behavior of extruded ZK60 magnesium (Mg) alloy was experimentally investigated under strain‐controlled loading with the strain amplitudes at 4%, 1%, and 0.35%. The testing specimens were taken from extrusion direction (ED), transverse direction (TD), and a material precompressed to 9.4% along the ED (ED−9.4%). At a high strain amplitude of 4%, the cyclic deformation modes of ED and ED−9.4%specimens are similar, and they experience twinning exhaustion → slip and detwinning exhaustion → slip during each loading cycle. At a medium strain amplitude of 1%, twinning‐detwinning is involved in the cyclic deformation, but different deformation mechanisms were observed in the 3 different specimens. Partial twinning‐complete detwinning mode dominates the cyclic deformation in the ED specimen, while partial detwinning‐retwinning mode occurs in the ED−9.4%specimen. For the TD specimen, both basal slip andtension twinning occur during cyclic deformation. At a low strain amplitude of 0.35%, dislocation slips dominate the deformation for the ED specimen with a few observable tension twins. For the ED−9.4%specimen, initially twined texture increases the ductility of the material and enhances fatigue life as compared with the other 2 specimens.

 
more » « less
NSF-PAR ID:
10053445
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Fatigue & Fracture of Engineering Materials & Structures
Volume:
41
Issue:
7
ISSN:
8756-758X
Page Range / eLocation ID:
p. 1504-1513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An extruded AZ31B (Mg-3Al-1Zn-0.5Mn) magnesium alloy with a twin volume fraction of 60% was subjected to fully reversed strain-controlled tension-compression along the extrusion direction at strain amplitudes ranging from 0.23% to 0.45%. Dislocation slips were the dominant plastic deformation mechanisms without involving persistent twinning-detwinning. At an identical strain amplitude, the fatigue life of the pre-twinned alloy was much lower than that of the as-extruded alloy. Fatigue cracks were mainly initiated on the prismatic or prismatic-basal slip bands in the parent grains. The material volume reduction of the parent grains in the pre-twinned alloy enhanced fatigue damage. Twin cracks were not observed. 
    more » « less
  2. null (Ed.)
    Stress-strain responses and twinning characteristics are studied for a rolled AZ31B magnesium alloy under three different stress states: tension along the normal direction (NDT), compression along the rolled direction (RDC), and torsion about the normal direction (NDTOR) using companion specimens interrupted at incremental strain levels. Tension twinning is extensively induced in twinning-favorable NDT and RDC. All the six variants of tension twin are activated under NDT, whereas a maximum of four variants is activated under RDC. Under NDTOR, both tension twins and compression twins are activated at relatively large strains and twinning occurs in a small fraction of favored grains rather than in the majority of grains. Secondary and tertiary twins are observed in the favorably-orientated grains at high strain levels. Deformation under each stress state shows three stages of strain hardening rate: fast decrease (Stage I), sequential increase (Stage II), and progressive decrease (Stage III). The increase in the hardening rate, which is more significant under NDT and RDC as compared to NDTOR, is attributed to the hardening effect of twin boundaries and twinning texture-induced slip activities. The hardening effect of twin boundaries include the dynamic Hall-Petch hardening induced by the multiplication of twin boundaries (TBs) and twin-twin boundaries (TTBs) as well as the hardening effect associated with the energetically unfavorable TTB formation. When the applied plastic strain is larger than 0.05 under NDT and RDC, the tension twin volume fraction is higher than 50%. The twinning-induced texture leads to the activation of non-basal slips mainly in the twinned volume, i.e. prismatic slips under NDT and pyramidal slips under RDC. The low work hardening under NDTOR is due to the prevailing basal slips with reduced twinning activities under NDTOR. 
    more » « less
  3. Abstract

    The electrical performance of stretchable electronic inks degrades as they undergo cyclic deformation during use, posing a major challenge to their reliability. The experimental characterization of ink fatigue behavior can be a time-consuming process, and models allowing accurate resistance evolution and life estimates are needed. Here, a model is proposed for determining the electrical resistance evolution during cyclic loading of a screen-printed composite conductive ink. The model relies on two input specimen-characteristic curves, assumes a constant rate of normalized resistance increase for a given strain amplitude, and incorporates the effects of both mean strain and strain amplitude. The model predicts the normalized resistance evolution of a cyclic test with reasonable accuracy. The mean strain effects are secondary compared to strain amplitude, except for large strain amplitudes (>10%) and mean strains (>30%). A trace width effect is found for the fatigue behavior of 1 mm vs 2 mm wide specimens. The input specimen-characteristic curves are trace-width dependent, and the model predicts a decrease inNfby a factor of up to 2 for the narrower trace width, in agreement with the experimental results. Two different methods are investigated to generate the rate of normalized resistance increase curves: uninterrupted fatigue tests (requiring ∼6–7 cyclic tests), and a single interrupted cyclic test (requiring only one specimen tested at progressively higher strain amplitude values). The results suggest that the initial decrease in normalized resistance rate only occurs for specimens with no prior loading. The minimum-rate curve is therefore recommended for more accurate fatigue estimates.

     
    more » « less
  4. null (Ed.)
    The mechanical response and microstructure evolution in a rolled AZ31B magnesium alloy were experimentally characterized using companion thin-walled tubular specimens under free-end monotonic torsion. The tubular specimens were made with their axes along the normal direction of the rolled magnesium plate. The shear stress-shear strain response shows a subtle sigmodal shape that is composed of four distinctive stages of strain hardening. Basal slips and tension twinning are operated throughout the shear deformation. Both tension twinning and compressing twinning are favored. Growth and interaction of tension twins with multiple variants lead to formation of twin-twin boundaries (TTBs). The collective hardening effects by twin boundary (TB) and TTB result in a unique rise of the strain hardening rate in Stage II and III. In addition to primary twins, tension-compression double twins and tension-compression-tension tertiary twins with detectable sizes are observed in the tension-twin favorable grains whereas compression-tension double twins are detected in the tension-twin unfavorable grains; all of which become more observable with the increasing shear strain. During Stage IV deformation where TTB formation exhausts, non-basal prismatic slips become more significant and are responsible for the progressive decrease in strain hardening rate in this stage. Swift effect, which is commonly observed in textured materials, is evidenced under free-end torsion. The origin of Swift effect is confirmed to be dislocation slips at a shear strain less than 5% but is predominantly due to tension twinning at a larger plastic strain. 
    more » « less
  5. Cylindrical specimens of CrCoNi alloy with electropolished surfaces were subjected to constant total strain amplitude low cycle fatigue. The alloy exhibited an initial period of cyclic hardening followed by cyclic softening until failure occurred. At the end of hardening stage at the peak of cyclic stress, well-developed persistent slip markings (PSMs) consisting of extrusions and intrusions were associated with thin deformation twins. A sophisticated experimental workflow was designed to extract information from the surface and the bulk of tested material. A combination of SEM, EBSD, ECCI, FIB and HR-STEM was used to study the internal structure and the surface profiles around the deformation twins, which were produced during the initial period of cyclic loading. Furthermore, localized cyclic plastic strain and stress concentrations near deformation twins led not only to early, well-developed PSMs, but also to the activation of TWIP and TRIP plasticity even at low macroscopic stress amplitudes. 
    more » « less