skip to main content


Title: Multibiometric secure system based on deep learning
In this paper, we propose a secure multibiometric system that uses deep neural networks and error-correction coding. We present a feature-level fusion framework to generate a secure multibiometric template from each user’s multiple biometrics. Two fusion architectures, fully connected architecture and bilinear architecture, are implemented to develop a robust multibiometric shared representation. The shared representation is used to generate a cancelable biometric template that involves the selection of a different set of reliable and discriminative features for each user. This cancelable template is a binary vector and is passed through an appropriate error-correcting decoder to find a closest codeword and this codeword is hashed to generate the final secure template. The efficacy of the proposed approach is shown using a multimodal database where we achieve state-of-the-art matching performance, along with cancelability and security.  more » « less
Award ID(s):
1650474 1066197
NSF-PAR ID:
10053523
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. IEEE Global Conf. on Signal and Information Processing (GlobalSIP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety-critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available.In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not a remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs. 
    more » « less
  2. In the age of Big Genomics Data, institutions such as the National Human Genome Research Institute (NHGRI) are challenged in their efforts to share volumes of data between researchers, a process that has been plagued by unreliable transfers and slow speeds. These occur due to throughput bottlenecks of traditional transfer technologies. Two factors that affect the effciency of data transmission are the channel bandwidth and the amount of data. Increasing the bandwidth is one way to transmit data effciently, but might not always be possible due to resource limitations. Another way to maximize channel utilization is by decreasing the bits needed for transmission of a dataset. Traditionally, transmission of big genomic data between two geographical locations is done using general-purpose protocols, such as hypertext transfer protocol (HTTP) and file transfer protocol (FTP) secure. In this paper, we present a novel deep learning-based data minimization algorithm that 1) minimizes the datasets during transfer over the carrier channels; 2) protects the data from the man-in-the-middle (MITM) and other attacks by changing the binary representation (content-encoding) several times for the same dataset: we assign different codewords to the same character in different parts of the dataset. Our data minimization strategy exploits the alphabet limitation of DNA sequences and modifies the binary representation (codeword) of dataset characters using deep learning-based convolutional neural network (CNN) to ensure a minimum of code word uses to the high frequency characters at different time slots during the transfer time. This algorithm ensures transmission of big genomic DNA datasets with minimal bits and latency and yields an effcient and expedient process. Our tested heuristic model, simulation, and real implementation results indicate that the proposed data minimization algorithm is up to 99 times faster and more secure than the currently used content-encoding scheme used in HTTP of the HTTP content-encoding scheme and 96 times faster than FTP on tested datasets. The developed protocol in C# will be available to the wider genomics community and domain scientists. 
    more » « less
  3. Insulin pumps have been widely used by patients with diabetes. Insulin pump systems adopt wireless channels with few cryptographic mechanisms, which makes them vulnerable to many attacks. In this paper, we focus on the wireless channel between Carelink USB and insulin pump on which the attackers can launch message eavesdropping and/or therapy manipulation attacks, which may put the patient in a life-threatening situation. Some prior solutions such as certificate-based or token-based schemes need either complicated key management or additional devices. We propose a novel voiceprint-based access control scheme comprising anti-replay speaker verification and voiceprint-based key agreement to secure the channel between the Carelink USB and insulin pump. Our scheme does not need permanent key sharing or additional devices. The anti-replay speaker verification adopts cascaded fusion of speaker verification and anti-replay countermeasure to ensure the insulin pump can be accessed by Carelink USB only after the legitimate user passes the identity verification. The evaluation on ASVspoof 2017 datasets shows that our scheme achieves a 4.02% Equal Error Rate (EER) with the existence of replay impostors. Besides, our scheme uses energy-difference-based voiceprint extraction and secure multi-party computing to generate a common cryptography (temporary) key between the Carelink USB and insulin pump, which can be used to encrypt the subsequent communication, and protect the insulin pump from eavesdropping and therapy manipulation attacks. By appropriately setting the similarity threshold of voiceprints, our key agreement scheme allows the insulin pump to establish a secure channel only with the device in its close proximity. 
    more » « less
  4. A major challenge in cooperative sensing is to weight the measurements taken from the various sources to get an accurate result. Ideally, the weights should be inversely proportional to the error in the sensing information. However, previous cooperative sensor fusion approaches for autonomous vehicles use a fixed error model, in which the covariance of a sensor and its recognizer pipeline is just the mean of the measured covariance for all sensing scenarios. The approach proposed in this paper estimates error using key predictor terms that have high correlation with sensing and localization accuracy for accurate covariance estimation of each sensor observation. We adopt a tiered fusion model consisting of local and global sensor fusion steps. At the local fusion level, we add in a covariance generation stage using the error model for each sensor and the measured distance to generate the expected covariance matrix for each observation. At the global sensor fusion stage we add an additional stage to generate the localization covariance matrix from the key predictor term velocity and combines that with the covariance generated from the local fusion for accurate cooperative sensing. To showcase our method, we built a set of 1/10 scale model autonomous vehicles with scale accurate sensing capabilities and classified the error characteristics against a motion capture system. Results show an average and max improvement in RMSE when detecting vehicle positions of 1.42x and 1.78x respectively in a four-vehicle cooperative fusion scenario when using our error model versus a typical fixed error model. 
    more » « less
  5. Error correction coding schemes with local-global decoding are motivated by practical data storage applications where a balance must be achieved between low latency read access and high data reliability. As an example, consider a 4KB codeword, consisting of four 1KB subblocks, that supports a local-global decoding architecture. Local decoding can provide reliable, low-latency access to individual 1KB subblocks under good channel conditions, while global decoding can provide a “safety-net” for recovery of the entire 4KB block when local decoding fails under bad channel conditions. Recently, Ram and Cassuto have proposed such local-global decoding architectures for LDPC codes and spatially coupled LDPC codes. In this paper, we investigate a coupled polar code architecture that supports both local and global decoding. The coupling scheme incorporates a systematic outer polar code and a partitioned mapping of the outer codeword to semipolarized bit-channels of the inner polar codes. Error rate simulation results are presented for 2 and 4 subblocks. 
    more » « less