Reliability and accuracy of iris biometric modality has prompted its large-scale deployment for critical applications such as border control and national ID projects. The extensive growth of iris recognition systems has raised apprehensions about susceptibility of these systems to various attacks. In the past, researchers have examined the impact of various iris presentation attacks such as textured contact lenses and print attacks. In this research, we present a novel presentation attack using deep learning based synthetic iris generation. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, we propose a new framework, named as iDCGAN (iris deep convolutional generative adversarial network) for generating realistic appearing synthetic iris images. We demonstrate the effect of these synthetically generated iris images as presentation attack on iris recognition by using a commercial system. The state-of-the-art presentation attack detection framework, DESIST is utilized to analyze if it can discriminate these synthetically generated iris images from real images. The experimental results illustrate that mitigating the proposed synthetic presentation attack is of paramount importance.
LivDet iris 2017 — Iris liveness detection competition 2017
Presentation attacks such as using a contact lens with
a printed pattern or printouts of an iris can be utilized to
bypass a biometric security system. The first international
iris liveness competition was launched in 2013 in order
to assess the performance of presentation attack detection
(PAD) algorithms, with a second competition in 2015. This
paper presents results of the third competition, LivDet-Iris
2017. Three software-based approaches to Presentation Attack
Detection were submitted. Four datasets of live and
spoof images were tested with an additional cross-sensor
test. New datasets and novel situations of data have resulted
in this competition being of a higher difficulty than
previous competitions. Anonymous received the best results
with a rate of rejected live samples of 3.36% and rate of accepted
spoof samples of 14.71%. The results show that even
with advances, printed iris attacks as well as patterned contacts
lenses are still difficult for software-based systems to
detect. Printed iris images were easier to be differentiated
from live images in comparison to patterned contact lenses
as was also seen in previous competitions.
- Publication Date:
- NSF-PAR ID:
- 10053775
- Journal Name:
- International Joint Conference on Biometrics (IJCB)
- Page Range or eLocation-ID:
- 733 to 741
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unconstrained visible spectrum iris with textured contact lens variations: Database and benchmarkingIris recognition in visible spectrum has developed into an active area of research. This has elevated the importance of efficient presentation attack detection algorithms, particularly in security based critical applications. In this paper, we present the first detailed analysis of the effect of contact lenses on iris recognition in visible spectrum. We introduce the first contact lens database in visible spectrum, Unconstrained Visible Contact Lens Iris (UVCLI) Database, containing samples from 70 classes with subjects wearing textured contact lenses in indoor and outdoor environments across multiple sessions. We observe that textured contact lenses degrade the visible spectrum iris recognition performance by over 25% and thus, may be utilized intentionally or unintentionally to attack existing iris recognition systems. Next, three iris presentation attack detection (PAD) algorithms are evaluated on the proposed database and highest PAD accuracy of 82.85% is observed. This illustrates that there is a significant scope of improvement in developing efficient PAD algorithms for detection of textured contact lenses in unconstrained visible spectrum iris images.
-
The widespread use of smartphones has spurred the research in mobile iris devices. Due to their convenience, these mobile devices are also utilized in unconstrained outdoor scenarios. This has necessitated the development of reliable iris recognition algorithms for such uncontrolled environment. At the same time, iris presentation attacks pose a major challenge to current iris recognition systems. It has been shown that print attacks and textured contact lens may significantly degrade the iris recognition performance. Motivated by these factors, we present a novel Mobile Uncontrolled Iris Presentation Attack Database (MUIPAD). The database contains more than 10,000 iris images that are acquired with and without textured contact lenses in indoor and outdoor environments using a mobile sensor. We also investigate the efficacy of textured contact lens in identity impersonation and obfuscation. Moreover, we demonstrate the effectiveness of deep learning based features for iris presentation attack detection on the proposed database.
-
Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.
-
In biometric systems, the process of identifying or verifying people using facial data must be highly accurate to ensure a high level of security and credibility. Many researchers investigated the fairness of face recognition systems and reported demographic bias. However, there was not much study on face presentation attack detection technology (PAD) in terms of bias. This research sheds light on bias in face spoofing detection by implementing two phases. First, two CNN (convolutional neural network)-based presentation attack detection models, ResNet50 and VGG16 were used to evaluate the fairness of detecting imposer attacks on the basis of gender. In addition, different sizes of Spoof in the Wild (SiW) testing and training data were used in the first phase to study the effect of gender distribution on the models’ performance. Second, the debiasing variational autoencoder (DB-VAE) (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) was applied in combination with VGG16 to assess its ability to mitigate bias in presentation attack detection. Our experiments exposed minor gender bias in CNN-based presentation attack detection methods. In addition, it was proven that imbalance in training and testing data does not necessarily lead to gender bias in the model’s performance.more »