skip to main content


Title: Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges–Brahmaputra and Amazon delta regions
Award ID(s):
1342944
NSF-PAR ID:
10053946
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Sustainability Science
Volume:
11
Issue:
4
ISSN:
1862-4065
Page Range / eLocation ID:
539 to 554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. River deltas are sites of sediment accumulation along thecoastline that form critical biological habitats, host megacities, andcontain significant quantities of hydrocarbons. Despite their importance, wedo not know which factors most significantly promote sediment accumulationand dominate delta formation. To investigate this issue, we present a globaldataset of 5399 coastal rivers and data on eight environmental variables.Of these rivers, 40 % (n=2174) have geomorphic deltas defined eitherby a protrusion from the regional shoreline, a distributary channel network,or both. Globally, coastlines average one delta forevery ∼300 km of shoreline, but there are hotspots of delta formation, for examplein Southeast Asia where there is one delta per 100 km of shoreline. Ouranalysis shows that the likelihood of a river to form a delta increases withincreasing water discharge, sediment discharge, and drainage basin area. Onthe other hand, delta likelihood decreases with increasing wave height andtidal range. Delta likelihood has a non-monotonic relationship withreceiving-basin slope: it decreases with steeper slopes, but for slopes >0.006 delta likelihood increases. This reflects differentcontrols on delta formation on active versus passive margins. Sedimentconcentration and recent sea level change do not affect delta likelihood. Alogistic regression shows that water discharge, sediment discharge, waveheight, and tidal range are most important for delta formation. The logisticregression correctly predicts delta formation 74 % of the time. Our globalanalysis illustrates that delta formation and morphology represent a balancebetween constructive and destructive forces, and this framework may helppredict tipping points at which deltas rapidly shift morphologies. 
    more » « less
  2. Abstract

    Wax Lake Delta, southern Louisiana, is a coastal delta that formed following the dredging of a river channel in 1941 and is a field model for investigating the geomorphology, ecology, carbon dynamics, and carbon storage capacity in young prograding deltas. However, it is unknown how the transition from subaqueous to subaerial sediments affects the sources and quality of the sequestered carbon. We investigated these variations within the sediments of Wax Lake Delta using amino acid, lignin, and stable carbon isotope compositions of the organic matter (OM). A principal component analysis of these proxies highlighted variability in organic carbon (OC) composition with changes in elevation. The transition from subaqueous to subaerial sediments at 0‐cm mean lower low water is an important component of the OM composition. In addition to the changes observed for OM source and quality, the OC loadings (OC/SA; mg C/m2) also increase as the delta aggrades and accumulates sediments with loadings typical of delta topsets and mobile mud banks (OC/SA < 0.4) to riverine sediments (0.5 < OC/SA < 1) and eventually to highly productive regions (OC/SA > 1). Linking this multiproxy approach with environmental variables such as elevation provides a path for incorporating OM dynamics into geomorphic models.

     
    more » « less