Cryo-FIB Milling and Lift-Out for Preparation of Specimens for Cryo-TEM
- Award ID(s):
- 1654596
- PAR ID:
- 10053960
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 23
- Issue:
- S1
- ISSN:
- 1431-9276
- Page Range / eLocation ID:
- 2312 to 2313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This work describes cryogenic ex situ lift out (cryo-EXLO) of cryogenic focused ion beam (cryo-FIB) thinned specimens for analysis by cryogenic transmission electron microscopy (cryo-TEM). The steps and apparatus necessary for cryo-EXLO are described. Methods designed to limit ice contamination include use of an anti-frost lid, a vacuum transfer assembly, and a cryostat. Cryo-EXLO is performed in a cryostat with the cryo-shuttle holder positioned in the cryogenic vapor phase above the surface of liquid N2 (LN2) using an EXLO manipulation station installed inside a glove box maintained at < 10% relative humidity and inert (e.g., N2 gas) conditions. Thermal modeling shows that a cryo-EXLO specimen will remain vitreous within its FIB trench indefinitely while LN2 is continuously supplied. Once the LN2 is cut off, modeling shows that the EXLO specimen will remain vitreous for over 4 min, allowing sufficient time for the cryo-transfer steps which take only seconds to perform. Cryo-EXLO was applied successfully to cryo-FIB-milled specimen preparation of a polymer sample and plunge-frozen yeast cells. Cryo-TEM of both the polymer and the yeast shows minimal ice contamination with the yeast specimen maintaining its vitreous phase, illustrating the potential of cryo-EXLO for cryo-FIB-TEM of beam-sensitive, liquid, or biological materials.more » « less
-
Cryo-ultrasonic testing utilizes polycrystalline ice coupling to enable the inspection of metallic components with complex shape. The relatively high velocity of compressional waves in ice (approximately 4000 m s−1) and its ability to support the propagation of shear waves, significantly strengthen the ultrasonic transmission through curved interfaces over conventional water coupling. This paper explores the possibility of further enhancing the ultrasonic properties of ice by dispersing solid particles in water before it is frozen. Complex physicochemical phenomena occur when aqueous dispersions freeze which can lead to a solid material with microstructural characteristics that may be unfavorable to the propagation of ultrasonic waves. Here, these effects are controlled to produce a composite material consisting of alumina nanoparticles in an ice matrix. The composite exhibits compressional and shear wave velocities of approximately 4800 m s−1 and 2700 m s−1 , respectively. Importantly, the mass density of the material is more than twice as large as the density of water. Finally, it is shown that a phenomenon similar to a glass transition occurs during freezing which results in low ultrasonic attenuation when the temperature approaches – 100 °C.more » « less
An official website of the United States government

