skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward ecologically realistic predictions of species distributions: A cross‐time example from tropical montane cloud forests
Abstract There is an urgent need for more ecologically realistic models for better predicting the effects of climate change on species’ potential geographic distributions. Here we build ecological niche models usingMAXENTand test whether selecting predictor variables based on biological knowledge and selecting ecologically realistic response curves can improve cross‐time distributional predictions. We also evaluate how the method chosen for extrapolation into nonanalog conditions affects the prediction. We do so by estimating the potential distribution of a montane shrew (Mammalia, Soricidae,Cryptotis mexicanus) at present and the Last Glacial Maximum (LGM). Because it is tightly associated with cloud forests (with climatically determined upper and lower limits) whose distributional shifts are well characterized, this species provides clear expectations of plausible vs. implausible results. Response curves for theMAXENTmodel made using variables selected via biological justification were ecologically more realistic compared with those of the model made using many potential predictors. This strategy also led to much more plausible geographic predictions for upper and lower elevational limits of the species both for the present and during theLGM. By inspecting the modeled response curves, we also determined the most appropriate way to extrapolate into nonanalog environments, a previously overlooked factor in studies involving model transfer. This study provides intuitive context for recommendations that should promote more realistic ecological niche models for transfer across space and time.  more » « less
Award ID(s):
1650241
PAR ID:
10053966
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1511-1522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Landscape genomic approaches for detecting genotype‐environment associations (GEA), isolation by distance (IBD) and isolation by environment (IBE) have seen a dramatic increase in use, but there have been few thorough analyses of the influence of sampling strategy on their performance under realistic genomic and environmental conditions. We simulated 24,000 datasets across a range of scenarios with complex population dynamics and realistic landscape structure to evaluate the effects of the spatial distribution and number of samples on common landscape genomics methods. Our results show that common analyses are relatively robust to sampling scheme as long as sampling covers enough environmental and geographic space. We found that for detecting adaptive loci and estimatingIBE, sampling schemes that were explicitly designed to increase coverage of available environmental space matched or outperformed sampling schemes that only considered geographic space. When sampling does not cover adequate geographic and environmental space, such as with transect‐based sampling, we detected fewer adaptive loci and had higher error when estimatingIBDandIBE. We found thatIBDcould be detected with as few as nine sampling sites, while large sample sizes (e.g., greater than 100 individuals) were crucial for detecting adaptive loci andIBE. We also demonstrate that, even with optimal sampling strategies, landscape genomic analyses are highly sensitive to landscape structure and migration—when spatial autocorrelation and migration are weak, commonGEAmethods fail to detect adaptive loci. 
    more » « less
  2. Dimethylsulfoniopropionate (DMSP) is produced by many species of marine phytoplankton and has been reported to provide a variety of beneficial functions including osmoregulation. Dinoflagellates are recognized as majorDMSPproducers; however, accumulation has been shown to be highly variable in this group. We explored the effect of hyposaline transfer inGambierdiscus belizeanusbetween ecologically relevant salinities (36 and 31) onDMSPaccumulation, Chla, cell growth, and cell volume, over 12 d. Our results showed thatG. belizeanusmaintained an intracellularDMSPcontent of 16.3 pmol cell−1and concentration of 139 mMin both salinities. Although this intracellular concentration was near the median reported for other dinoflagellates, the cellular content achieved byG. belizeanuswas the highest reported of any dinoflagellate thus far, owing mainly to its large size.DMSPlevels were not significantly affected by salinity treatment but did change over time during the experiment. Salinity, however, did have a significant effect on the ratio ofDMSP:Chla, suggesting that salinity transfer ofG. belizeanusinduced a physiological response other thanDMSPadjustment. A survey ofDMSPcontent in a variety ofGambierdiscusspecies and strains revealed relatively highDMSPconcentrations (1.0–16.4 pmol cell−1) as well as high intrageneric and intraspecific variation. We conclude that, althoughDMSPmay not be involved in long‐term (3–12 d) osmoregulation in this species,G. belizeanusand otherGambierdiscusspecies may be important contributors toDMSPproduction in tropical benthic microalgal communities due to their large size and high cellular content. 
    more » « less
  3. Summary Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant‐wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+and electrical signaling (‘trio signaling’) appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as theROSproducingNAPDHoxidaseRBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor‐like channelsGLR3.3 andGLR3.6. The plant cell wall presents a plant‐specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such asROSor H+remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell‐to‐cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses. 
    more » « less
  4. Abstract Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regionalNDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing ofNDVIto track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition toNDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found thatNDVIdecreased with long‐term reductions in soil moisture at theAPEXsite, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasingNDVIwith elevated temperature at theSPRUCEsite, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at theSPRUCEsite also led to increases in theLAIof the shrub layer. We found no strong effects of elevatedCO2on community composition. Our findings support recent studies suggesting that changes inNDVIobserved from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming. 
    more » « less
  5. Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting. 
    more » « less