 Award ID(s):
 1654425
 NSFPAR ID:
 10054026
 Date Published:
 Journal Name:
 Optics Express
 Volume:
 25
 Issue:
 15
 ISSN:
 10944087
 Page Range / eLocation ID:
 18175
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gatelevel error with probability close to one. We model noise by adding a pair of weak, unital, singlequbit noise channels after each twoqubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution
and the corresponding noiseless output distribution$$p_{\text {noisy}}$$ ${p}_{\text{noisy}}$ shrink exponentially with the expected number of gatelevel errors. Specifically, the linear crossentropy benchmark$$p_{\text {ideal}}$$ ${p}_{\text{ideal}}$F that measures this correlation behaves as , where$$F=\text {exp}(2s\epsilon \pm O(s\epsilon ^2))$$ $F=\text{exp}(2s\u03f5\pm O\left(s{\u03f5}^{2}\right))$ is the probability of error per circuit location and$$\epsilon $$ $\u03f5$s is the number of twoqubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution and the uniform distribution$$p_{\text {noisy}}$$ ${p}_{\text{noisy}}$ decays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {unif}}$$ ${p}_{\text{unif}}$ . In other words, although at least one local error occurs with probability$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1F)p_{\text {unif}}$$ ${p}_{\text{noisy}}\approx F{p}_{\text{ideal}}+(1F){p}_{\text{unif}}$ , the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$1F$$ $1F$ . Thus, the “whitenoise approximation” is meaningful when$$O(F\epsilon \sqrt{s})$$ $O\left(F\u03f5\sqrt{s}\right)$ , a quadratically weaker condition than the$$\epsilon \sqrt{s} \ll 1$$ $\u03f5\sqrt{s}\ll 1$ requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$\epsilon s\ll 1$$ $\u03f5s\ll 1$ , which corresponds to only$$s \ge \Omega (n\log (n))$$ $s\ge \Omega (nlog(n\left)\right)$logarithmic depth circuits, and if, additionally, the inverse error rate satisfies , which is needed to ensure errors are scrambled faster than$$\epsilon ^{1} \ge {\tilde{\Omega }}(n)$$ ${\u03f5}^{1}\ge \stackrel{~}{\Omega}\left(n\right)$F decays. The whitenoise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexitytheoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from secondmoment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds. 
Parameterized Quantum Circuits (PQC) are promising towards quantum advantage on nearterm quantum hardware. However, due to the large quantum noises (errors), the performance of PQC models has a severe degradation on real quantum devices. Take Quantum Neural Network (QNN) as an example, the accuracy gap between noisefree simulation and noisy results on IBMQYorktown for MNIST4 classification is over 60%. Existing noise mitigation methods are general ones without leveraging unique characteristics of PQC; on the other hand, existing PQC work does not consider noise effect. To this end, we present QuantumNAT, a PQCspecific framework to perform noiseaware optimizations in both training and inference stages to improve robustness. We experimentally observe that the effect of quantum noise to PQC measurement outcome is a linear map from noisefree outcome with a scaling and a shift factor. Motivated by that, we propose postmeasurement normalization to mitigate the feature distribution differences between noisefree and noisy scenarios. Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to PQC according to realistic noise models of quantum hardware. Finally, postmeasurement quantization is introduced to quantize the measurement outcomes to discrete values, achieving the denoising effect. Extensive experiments on 8 classification tasks using 6 quantum devices demonstrate that QuantumNAT improves accuracy by up to 43%, and achieves over 94% 2class, 80% 4class, and 34% 10class classification accuracy measured on real quantum computers. The code for construction and noiseaware training of PQC is available in the TorchQuantum library.more » « less