skip to main content


Title: Body size and fecundity are correlated in feather lice (Phthiraptera: Ischnocera): implications for Harrison's rule: Relationship between size and fecundity in lice
NSF-PAR ID:
10054054
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
43
Issue:
3
ISSN:
0307-6946
Page Range / eLocation ID:
394 to 396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite theoretical advances, the ecological factors and functional traits that enable species varying in seed size and fecundity to coexist remain unclear. Given inherent fecundity advantages, why don't small‐seeded species dominate communities?

    In perennial grasslands, we evaluated whether small‐seeded species are less tolerant of competition from the community dominant bunchgrass than large‐seeded species, but also less vulnerable to seed predation by mice. We also explored whether trade‐offs involving competitive tolerance include two other functional traits, height and leaf mass per area (LMA). We added seeds of 17 forb species to plots where bunchgrass competition and rodent seed predation were manipulated across sites varying in bunchgrass productivity and thus competitive intensity. Seeds were added at densities mimicking interspecific variation in fecundity among target species.

    Standardizing for differences in fecundity (i.e. seed input, which enabled us to evaluate inherent interspecific differences in susceptibility to biotic interactions), bunchgrass competition more greatly reduced recruitment and establishment of small‐ versus large‐seeded species, whereas rodent seed predation more greatly reduced the recruitment of large‐ versus small‐seeded species. Plant height and LMA were unrelated to the competition effect size.

    Small‐seeded species abundance decreased across sites increasing in bunchgrass productivity, whereas this was not the case for large‐seeded species. For adult plants but not seedlings, community‐weighted functional trait means (CWM) for seed size, height and LMA increased in plots with versus without bunchgrass competition and the CWM for seed size and height also increased at sites with greater bunchgrass productivity (for adults only). In contrast, rodent seed predation had no significant effects on CWM seed size.

    At the end of the experiment, adult abundance positively correlated with plant fecundity in plots lacking bunchgrass, indicating the inherent advantages accrued to high fecundity small‐seeded species. However, with bunchgrass competition, abundances were equalized across species due to reduced competitive tolerance of high fecundity small‐seeded species.

    Synthesis. Our results suggest that coexistence among subordinate forb species varying in seed size and fecundity is in‐part due to a trade‐off involving competitive tolerance and fecundity, mediated by seed size and associated functional traits.

     
    more » « less
  2. null (Ed.)
    Most animals have a conserved mitochondrial genome structure composed of a single chromosome. However, some organisms have their mitochondrial genes separated on several smaller circular or linear chromosomes. Highly fragmented circular chromosomes (“minicircles”) are especially prevalent in parasitic lice (Insecta: Phthiraptera), with 16 species known to have between nine and 20 mitochondrial minicircles per genome. All of these species belong to the same clade (mammalian lice), suggesting a single origin of drastic fragmentation. Nevertheless, other work indicates a lesser degree of fragmentation (2–3 chromosomes/genome) is present in some avian feather lice (Ischnocera: Philopteridae). In this study, we tested for minicircles in four species of the feather louse genus Columbicola (Philopteridae). Using whole genome shotgun sequence data, we applied three different bioinformatic approaches for assembling the Columbicola mitochondrial genome. We further confirmed these approaches by assembling the mitochondrial genome of Pediculus humanus from shotgun sequencing reads, a species known to have minicircles. Columbicola spp. genomes are highly fragmented into 15–17 minicircles between ∼1,100 and ∼3,100 bp in length, with 1–4 genes per minicircle. Subsequent annotation of the minicircles indicated that tRNA arrangements of minicircles varied substantially between species. These mitochondrial minicircles for species of Columbicola represent the first feather lice (Philopteridae) for which minicircles have been found in a full mitochondrial genome assembly. Combined with recent phylogenetic studies of parasitic lice, our results provide strong evidence that highly fragmented mitochondrial genomes, which are otherwise rare across the Tree of Life, evolved multiple times within parasitic lice. 
    more » « less
  3. Yoshizawa, Kazunori (Ed.)
    Abstract The order Psocodea includes the two historically recognized groups Psocoptera (free-living bark lice) and Phthiraptera (parasitic lice) that were once considered separate orders. Psocodea is divided in three suborders: Trogiomorpha, Troctomorpha, and Psocomorpha, the latter being the largest within the free-living groups. Despite the increasing number of transcriptomes and whole genome sequence (WGS) data available for this group, the relationships among the six known infraorders within Psocomorpha remain unclear. Here, we evaluated the utility of a bait set designed specifically for parasitic lice belonging to suborder Troctomorpha to extract UCE loci from transcriptome and WGS data of 55 bark louse species and explored the phylogenetic relationships within Psocomorpha using these UCE loci markers. Taxon sampling was heavily focused on the families Lachesillidae and Elipsocidae, whose relationships have been problematic in prior phylogenetic studies. We successfully recovered a total of 2,622 UCE loci, with a 40% completeness matrix containing 2,081 UCE loci and an 80% completeness matrix containing 178 UCE loci. The average number of UCE loci recovered for the 55 species was 1,401. The WGS data sets produced a larger number of UCE loci (1,495) on average than the transcriptome data sets (972). Phylogenetic relationships reconstructed with Maximum Likelihood and coalescent-based analysis were concordant regarding the paraphyly of Lachesillidae and Elipsocidae. Branch support values were generally lower in analyses that used a fewer number of loci, even though they had higher matrix completeness. 
    more » « less