skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
More Like this
  1. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less
  2. Abstract The CO(1–0) line has been carefully calibrated as a tracer of molecular gas mass. However, recent studies often favor higherJtransitions of the CO molecule, which are brighter and accessible for redshift ranges where CO(1–0) is not. These lines are not perfect analogs for CO(1–0), owing to their more stringent excitation conditions, and must be calibrated for use as molecular gas tracers. Here, we introduce the Arizona Molecular ISM Survey with the SMT, a multi-CO line survey ofz∼ 0 galaxies conducted to calibrate the CO(2–1) and CO(3–2) lines. The final survey includes CO(2–1) spectra of 176 galaxies and CO(3–2) spectra for a subset of 45. We supplement these with archival CO(1–0) spectra from xCOLD GASS for all sources and additional CO(1–0) observations with the Kitt Peak 12 m Telescope. Targets were selected to be representative of the 109M≤M*≤ 1011.5Mgalaxy population. Our project emphasized careful characterization of statistical and systematic uncertainties to enable studies of trends in CO line ratios. We show that optical and CO disk sizes are on average equal, for both the CO(1–0) and CO(2–1) line. We measure the distribution of CO line luminosity ratios, finding medians (16th–84th percentile) of 0.71 (0.51–0.96) for the CO(2–1)-to-CO(1–0) ratio, 0.39 (0.24–0.53) for the CO(3–2)-to-CO(1–0) ratio, and 0.53 (0.41–0.74) for the CO(3–2)-to-CO(2–1) ratio. A companion paper presents our study of CO(2–1)'s applicability as a molecular gas mass tracer and search for trends in the CO(2–1)-to-CO(1–0) ratio. Our catalog of CO line luminosities is publicly available. 
    more » « less