skip to main content


Title: Producing Compliant Polluters: Seed Companies and Nitrogen Fertilizer Application in U.S. Corn Agriculture
Abstract

The majority of research to date has attributed the pollution problems associated with agriculture to the independent decisions of individual farmers; in this article, we illustrate how seed companies' subtle forms of coercion encourage farmers to become compliant polluters. We focus on corn farmers in the midwestern United States, whose management decisions have become increasingly controlled by seed companies. Beyond obvious forms of control, seed companies influence farmers in ways that are less apparent. Drawing from Foucault's concept of disciplinary power, we explore how seed companies have encouraged farmers to increase their application of nitrogen fertilizer through disciplinary mechanisms that naturalize the imposition of constraints. We argue that seed companies employ disciplinary techniques related to the biology of the seed, the product life cycle, and knowledge. While most farmers believe their fertilizer decisions are made independently, these disciplinary techniques compel farmers to increase nitrogen fertilizer application, resulting in increased water pollution and greenhouse gas emissions.

 
more » « less
NSF-PAR ID:
10054401
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Rural Sociology
Volume:
83
Issue:
4
ISSN:
0036-0112
Page Range / eLocation ID:
p. 857-881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Measuring soil health indicators (SHIs), particularly soil total nitrogen (TN), is an important and challenging task that affects farmers’ decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure SHIs are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing solution (UMS) to estimate soil TN in an agricultural farm. TN is an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. The ground-truth data required to train the AI approaches is generated via laser-induced breakdown spectroscopy (LIBS), which can be readily used to characterize soil samples, providing rapid chemical analysis of the samples and their constituents (e.g., nitrogen, potassium, phosphorus, calcium). Although LIBS was previously applied for soil nutrient detection, there is no existing study on the integration of LIBS with UAV multispectral imaging and AI. We train two machine learning (ML) models including multi-layer perceptron regression and support vector regression to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red (R), near-infrared, and green (G) spectral bands, computed vegetation indices (NDVI), and environmental variables including air temperature and relative humidity (RH). To generate the ground-truth data or the training data for the machine learning models, we determine the N spectrum of the soil samples (collected from a farm) using LIBS and develop a calibration model using the correlation between actual TN of the soil samples and the maximum intensity of N spectrum. In addition, we extract the features from the multispectral images captured while the UAV follows an autonomous flight plan, at different growth stages of the crops. The ML model’s performance is tested on a fixed configuration space for the hyper-parameters using various hyper-parameter optimization techniques at three different wavelengths of the N spectrum. 
    more » « less
  2. Abstract

    Nutrients, such as nitrogen and phosphorus, provide vital support for human life, but overloading nutrients to the Earth system leads to environmental concerns, such as water and air pollution on local scales and climate change on the global scale. With an urgent need to feed the world's growing population and the growing concern over nutrient pollution and climate change, sustainable nutrient management has become a major challenge for this century. To address this challenge, the growing body of research on nutrient budgets, namely the nutrient inputs and outputs of a given system, has provided great opportunities for improving scientific knowledge of the complex nutrient cycles in the coupled human and natural systems. This knowledge can help inform stakeholders, such as farmers, consumers, and policy makers, on their decisions related to nutrient management. This paper systematically reviews major challenges, as well as opportunities, in defining, quantifying, and applying nutrient budgets. Nutrient budgets have been defined for various systems with different research or application purposes, but the lack of consistency in the system definition and its budget terms has hindered intercomparison among studies and experience‐sharing among researchers and regions. Our review synthesizes existing nutrient budgets under a framework with five systems (i.e.,Soil‐Plantsystem,Animalsystem,Animal‐Plant‐Soilsystem,Agro‐Foodsystem, andLandscapesystem) and four spatial scales (i.e., Plot and Farm, Watershed, National, and Global scales). We define these systems and identify issues of nitrogen and phosphorus budgets within each. Few nutrient budgets have been well balanced at any scale, due to the large uncertainties in the quantification of several major budget terms. The type and level of challenges vary across spatial scales and also differ among nutrients. Improvement in nutrient budgets will rely not only on the technological advancement of scientific observations and models but also on better bookkeeping of human activity data. While some nutrient budget terms may need decades, or even centuries, of research to be well quantified within desirable levels of uncertainties, it is imperative to effectively communicate to interested stakeholders our understanding of nutrient budgets so that scientists and a variety of stakeholders can work together to address the sustainable nutrient management challenge of this century.

     
    more » « less
  3. Precision Agriculture (PA) technologies are well known to be useful in addressing field heterogeneities and enabling informed site-specific management decisions. While profitability is the foremost factor considered by farmers when making PA adoption decisions, information in this regard is lacking from the farmers' perspective. This paper analyzed 1119 farmer responses from a 2021 survey conducted in four states along the western margins of the U.S. Midwest. Our findings show that while most (around 60%) non-adopters indicate that they are unaware of PA profit change, adopters are likely to rate a major profit increase. About two thirds of adopters rated at least a 5% increase in profitability towards variable rate (VR) fertilizer application (72%), VR seed application (68%), and automatic section control (66%). We modeled farmers' profit change subsequent to PA adoptions. Our regression results demonstrate that the profits from PA usage increase over time and that use of conservation practices likely influences PA profitability in a positive way. As soil quality and weather factors also affect profit ratings, it would be beneficial to compare and demonstrate profitability potential of various PA technologies on a regional basis and tailor the promotion efforts to farmers most likely to benefit from them. 
    more » « less
  4. Abstract

    Legumes are used in crop rotations by both large‐scale and smallholder farmers alike to increase soil fertility, especially before high‐nitrogen‐demanding crops such as corn (maize). Legume crop residues and green manures are rich in nitrogen due to mutualistic rhizobia, bacteria that live in their roots and convert atmospheric nitrogen into a biologically available form. Growers can obtain recommendations from local extension offices about how much less inorganic nitrogen fertilizer needs to be added to a subsequent crop following different legume break crops for the predominant soil type (the nitrogen fertilizer replacement value, or NFRV). Due to the intimate relationship between legumes and rhizobia, conditions that affect plant health can also affect the rhizobia and how much nitrogen they provide. We use a combination of empirical data and previously published values to estimate reductions in nitrogen inputs under outbreaks of plant viruses of varying severity. We also use historical fertilizer prices to examine the economic impacts of this lost fertilizer for farmers. We find that fertilizer losses are greatest for crops that fix large amounts of nitrogen, such as clover and alfalfa as opposed to common bean. The economic impact on farmers is controlled by the proportion of plants with viral infections and the price of synthetic fertilizer. In a year of high disease prevalence, attention is normally focused on the yield of the diseased crops. We suggest that farmers growing legumes as break crops should be concerned about yields of subsequent crops as well. Viral diseases can be difficult to diagnose in the field, so the easiest way for farmers to prevent unexpected yield losses in subsequent crops is to test their soil when it is feasible to do so.

     
    more » « less
  5. null (Ed.)
    Technical best management practices are the dominant approach promoted to mitigate agriculture’s significant contributions to environmental degradation. Yet very few social science studies have examined how farmers actually use these practices. This study focuses on the outcomes of farmers’ technical best management practice adoption related to synthetic nitrogen fertilizer management in the context of Midwestern corn agriculture in the United States. Moving beyond predicting the adoption of nitrogen best management practices, I use structural equation modeling and data from a sample of over 2500 farmers to analyze how the number of growing season applications a farmer uses influences the rate at which synthetic nitrogen is applied at the field-level. I find that each additional application of N during the growing season is associated with an average increase of 2.4 kg/ha in farmers’ average N application rate. This result counters expectation for the outcome of this practice and may suggest that structural pressures are leading farmers to use additional growing season applications to ensure sufficiently high N rates, rather than allowing them to reduce rates. I conclude by discussing the implication of this study for future research and policy. 
    more » « less