skip to main content


Title: Strong genetic differentiation in tropical seagrass Enhalus acoroides (Hydrocharitaceae) at the Indo-Malay Archipelago revealed by microsatellite DNA

The Indo-Malay Archipelago is regarded as a barrier that separates organisms of the Indian and Pacific Oceans. Previous studies of marine biota from this region have found a variety of biogeographic barriers, seemingly dependent on taxon and methodology. Several hypotheses, such as emergence of the Sunda Shelf and recent physical oceanography, have been proposed to account for the genetic structuring of marine organisms in this region. Here, we used six microsatellite loci to infer genetic diversity, population differentiation and phylogeographic patterns ofEnhalus acoroidesacross the Indo-Malay Archipelago. Heterozygosities were consistently high, and significant isolation-by-distance, consistent with restricted gene flow, was observed. Both a neighbour joining tree based onDAdistance and Bayesian clustering revealed three major clusters ofE. acoroides. Our results indicate that phylogeographic patterns ofE. acoroideshave possibly been influenced by glaciation and deglaciation during the Pleistocene. Recent physical oceanography such as the South Java Current and the Seasonally Reversing Current may also play a role in shaping the genetic patterns ofE. acoroides.

 
more » « less
NSF-PAR ID:
10054625
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
6
ISSN:
2167-8359
Page Range / eLocation ID:
e4315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Eco‐phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species‐specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co‐distributed saltmarsh sparrow species differing along a specialization gradient—Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco‐phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity andNerather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long‐term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist‐generalist status and support the role of an eco‐phylogeographic approach in population and conservation genetics.

     
    more » « less
  2. Abstract

    Scleractinian corals are the main modern builders of coral reefs, which are major hot spots of marine biodiversity. Southern Atlantic reef corals are understudied compared to their Caribbean and Indo‐Pacific counterparts and many hypotheses about their population dynamics demand further testing. We employed thousands of single nucleotide polymorphisms (SNPs) recovered via ezRAD to characterize genetic population structuring and species boundaries in the amphi‐Atlantic hard coral genusFavia. Coalescent‐based species delimitation (BFD* – Bayes Factor Delimitation) recoveredF. fragumandF. gravidaas separate species. Although our results agree with depth‐related genetic structuring inF. fragum, they did not support incipient speciation of the ‘tall’ and ‘short’ morphotypes. The preferred scenario also revealed a split between two main lineages ofF. gravida, one from Ascension Island and the other from Brazil. The Brazilian lineage is further divided into a species that occurs throughout the Northeastern coast and another that ranges from the Abrolhos Archipelago to the state of Espírito Santo. BFD* scenarios were corroborated by analyses of SNP matrices with varying levels of missing data and by a speciation‐based delimitation approach (DELINEATE). Our results challenge current notions about Atlantic reef corals because they uncovered surprising genetic diversity inFaviaand rejected the long‐standing hypothesis that Abrolhos Archipelago may have served as a Pleistocenic refuge during the last glaciations.

     
    more » « less
  3. Abstract

    Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish,Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nineP. volitanssampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using anFSToutlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.

     
    more » « less
  4. Abstract Aim

    To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test.

    Location

    The Indo‐Pacific Ocean.

    Time period

    Pliocene through the Holocene.

    Major taxa studied

    Fifty‐six marine species.

    Methods

    We tested eight biogeographic hypotheses for partitioning of the Indo‐Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦSTdistributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦSTwith a distance‐based redundancy analysis (dbRDA).

    Results

    We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦSTthat was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦSTthat were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance.

    Main conclusions

    Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦSTvalues that range from 0 to nearly 0.5.

     
    more » « less
  5. Premise

    Long‐distance dispersal has been important in explaining the present distributions of many plant species. Despite being infrequent, such dispersal events have considerable evolutionary consequences, because bottlenecks during colonization can result in reduced genetic diversity. We examined the phylogeographic history ofLycium carolinianum, a widespread taxon that ranges from southeastern North America to several Pacific islands, with intraspecific diversity in sexual and mating systems.

    Methods

    We used Bayesian, likelihood, and coalescent approaches with nuclear and plastid sequence data and genome‐wide single nucleotide polymorphisms to reconstruct the dispersal history of this species. We also compared patterns of genetic variation in mainland and island populations using single nucleotide polymorphisms and allelic diversity at theS‐RNasemating system gene.

    Results

    Lycium carolinianumis monophyletic and dispersed once from the North American mainland, colonizing the Pacific islands ca. 40,100 years ago. This dispersal was accompanied by a loss of genetic diversity in SNPs and theS‐RNaselocus due to a colonization bottleneck and the loss of self‐incompatibility. Additionally, we documented at least two independent transitions to gynodioecy: once following the colonization of the Hawaiian Islands and loss of self‐incompatibility, and a second time associated with polyploidy in the Yucatán region of Mexico.

    Conclusions

    Long‐distance dispersal via fleshy, bird dispersed fruits best explains the unusually widespread distribution ofL. carolinianum. The collapse of diversity at theS‐RNaselocus in island populations suggests that self‐fertilization may have facilitated the subsequent colonization of Pacific islands following a single dispersal from mainland North America.

     
    more » « less