skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isotopically zoned carbonate cements in Early Paleozoic sandstones of the Illinois Basin: δ 18 O and δ 13 C records of burial and fluid flow
Award ID(s):
1658823 1524336
PAR ID:
10054706
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sedimentary Geology
Volume:
361
Issue:
C
ISSN:
0037-0738
Page Range / eLocation ID:
93 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. unknown (Ed.)
    This study introduces a novel oxygen-deficient perovskite, Sr2Fe0.75Co0.75Mn0.5O6-δ, synthesized through a solid-state reaction and thoroughly characterized by Powder XRD, SEM and direct current (DC) electrical conductivity measurements. The material, exhibiting a cubic crystal structure with the Pm3̅m space group, demonstrates intriguing electrical properties. At temperatures ranging from 25 to 400 °C, the material displays semiconductor-type conductivity, transitioning seamlessly to metallic-type conductivity from 400 to 800 °C. The deliberate incorporation of cobalt into the perovskite structure is found to be pivotal, as evidenced by a comparative analysis with its parent compound, Sr2FeMnO6-δ. This investigation reveals a substantial improvement in electrical conductivity, underscoring the significance of the partial substitution of cobalt. The tailored electrical properties of Sr2Fe0.75Co0.75Mn0.5O6-δ position it as a versatile candidate for electronic applications. 
    more » « less
  2. CaSrFe0.75Co0.75Mn0.5O6-δ, an oxygen-deficient perovskite, had been reported for its better electrocatalytic properties of oxygen evolution reaction. It is essential to investigate different properties such as the thermal conductivity of such efficient functional materials. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, the authors present an investigation of the thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ was found to be 0.724 W/m/K at 25 °C, exhibiting a notable thermal insulation property i.e., low thermal conductivity. 
    more » « less
  3. unknown (Ed.)
    The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to be 0.574W/m/K, exhibiting a notable thermal insulation property. 
    more » « less